Publications

Results 1001–1025 of 9,998
Skip to search filters

Greedy fiedler spectral partitioning for data-driven discrete exterior calculus

CEUR Workshop Proceedings

Huang, Andy H.; Trask, Nathaniel A.; Brissette, Christopher; Hu, Xiaozhe

The data-driven discrete exterior calculus (DDEC) structure provides a novel machine learning architecture for discovering structure-preserving models which govern data, allowing for example machine learning of reduced order models for complex continuum scale physical systems. In this work, we present a Greedy Fiedler Spectral (GFS) partitioning method to obtain a chain complex structure to support DDEC models, incorporating synthetic data obtained from high-fidelity solutions to partial differential equations. We provide justification for the effectiveness of the resulting chain complex and demonstrate its DDEC model trained for Darcy flow on a heterogeneous domain.

More Details

CSPlib - A Software Toolkit for the Analysis of Dynamical Systems and Chemical Kinetic Models

Diaz-Ibarra, Oscar H.; Kim, Kyungjoo K.; Safta, Cosmin S.; Najm, H.N.

CSPlib is an open source software library for analyzing general ordinary differential equation (ODE) systems and detailed chemical kinetic ODE systems. It relies on the computational singular perturbation (CSP) method for the analysis of these systems. The software provides support for: General ODE models (gODE model class) for computing source terms and Jacobians for a generic ODE system; TChem model (ChemElemODETChem model class) for computing source term, Jacobian, other necessary chemical reaction data, as well as the rates of progress for a homogenous batch reactor using an elementary step detailed chemical kinetic reaction mechanism. This class relies on the TChem [2] library; A set of functions to compute essential elements of CSP analysis (Kernel class). This includes computations of the eigensolution of the Jacobian matrix, CSP basis vectors and co-vectors, time scales (reciprocals of the magnitudes of the Jacobian eigenvalues), mode amplitudes, CSP pointers, and the number of exhausted modes. This class relies on the Tines library; A set of functions to compute the eigensolution of the Jacobian matrix using Tines library GPU eigensolver; A set of functions to compute CSP indices (Index Class). This includes participation indices and both slow and fast importance indices.

More Details

Data-driven learning of nonlocal models: From high-fidelity simulations to constitutive laws

CEUR Workshop Proceedings

You, Huaiqian; Yu, Yue; Silling, Stewart A.; D'Elia, Marta D.

We show that machine learning can improve the accuracy of simulations of stress waves in one-dimensional composite materials. We propose a data-driven technique to learn nonlocal constitutive laws for stress wave propagation models. The method is an optimization-based technique in which the nonlocal kernel function is approximated via Bernstein polynomials. The kernel, including both its functional form and parameters, is derived so that when used in a nonlocal solver, it generates solutions that closely match high-fidelity data. The optimal kernel therefore acts as a homogenized nonlocal continuum model that accurately reproduces wave motion in a smaller-scale, more detailed model that can include multiple materials. We apply this technique to wave propagation within a heterogeneous bar with a periodic microstructure. Several one-dimensional numerical tests illustrate the accuracy of our algorithm. The optimal kernel is demonstrated to reproduce high-fidelity data for a composite material in applications that are substantially different from the problems used as training data.

More Details

Using Monitoring Data to Improve HPC Performance via Network-Data-Driven Allocation

2021 IEEE High Performance Extreme Computing Conference, HPEC 2021

Zhang, Yijia; Aksar, Burak; Aaziz, Omar R.; Schwaller, Benjamin S.; Brandt, James M.; Leung, Vitus J.; Egele, Manuel; Coskun, Ayse K.

On high-performance computing (HPC) systems, job allocation strategies control the placement of a job among available nodes. As the placement changes a job's communication performance, allocation can significantly affects execution times of many HPC applications. Existing allocation strategies typically make decisions based on resource limit, network topology, communication patterns, etc. However, system network performance at runtime is seldom consulted in allocation, even though it significantly affects job execution times.In this work, we demonstrate using monitoring data to improve HPC systems' performance by proposing a NetworkData-Driven (NeDD) job allocation framework, which monitors the network performance of an HPC system at runtime and allocates resources based on both network performance and job characteristics. NeDD characterizes system network performance by collecting the network traffic statistics on each router link, and it characterizes a job's sensitivity to network congestion by collecting Message Passing Interface (MPI) statistics. During allocation, NeDD pairs network-sensitive (network-insensitive) jobs with nodes whose parent routers have low (high) network traffic. Through experiments on a large HPC system, we demonstrate that NeDD reduces the execution time of parallel applications by 11% on average and up to 34%.

More Details

Union: A Unified HW-SW Co-Design Ecosystem in MLIR for Evaluating Tensor Operations on Spatial Accelerators

Parallel Architectures and Compilation Techniques - Conference Proceedings, PACT

Jeong, Geonhwa; Kestor, Gokcen; Chatarasi, Prasanth; Parashar, Angshuman; Tsai, Po A.; Rajamanickam, Sivasankaran R.; Gioiosa, Roberto; Krishna, Tushar

To meet the extreme compute demands for deep learning across commercial and scientific applications, dataflow accelerators are becoming increasingly popular. While these “domain-specific” accelerators are not fully programmable like CPUs and GPUs, they retain varying levels of flexibility with respect to data orchestration, i.e., dataflow and tiling optimizations to enhance efficiency. There are several challenges when designing new algorithms and mapping approaches to execute the algorithms for a target problem on new hardware. Previous works have addressed these challenges individually. To address this challenge as a whole, in this work, we present a HW-SW codesign ecosystem for spatial accelerators called Union within the popular MLIR compiler infrastructure. Our framework allows exploring different algorithms and their mappings on several accelerator cost models. Union also includes a plug-and-play library of accelerator cost models and mappers which can easily be extended. The algorithms and accelerator cost models are connected via a novel mapping abstraction that captures the map space of spatial accelerators which can be systematically pruned based on constraints from the hardware, workload, and mapper. We demonstrate the value of Union for the community with several case studies which examine offloading different tensor operations (CONV/GEMM/Tensor Contraction) on diverse accelerator architectures using different mapping schemes.

More Details

Stochastic Deep Model Reference Adaptive Control

Proceedings of the IEEE Conference on Decision and Control

Joshi, Girish; Chowdhary, Girish; van Bloemen Waanders, Bart G.

In this paper, we present a Stochastic Deep Neural Network-based Model Reference Adaptive Control. Building on our work "Deep Model Reference Adaptive Control", we extend the controller capability by using Bayesian deep neural networks (DNN) to represent uncertainties and model nonlinearities. Stochastic Deep Model Reference Adaptive Control uses a Lyapunov-based method to adapt the outputlayer weights of the DNN model in real-time, while a data-driven supervised learning algorithm is used to update the inner-layers parameters. This asynchronous network update ensures boundedness and guaranteed tracking performance with a learning-based real-time feedback controller. A Bayesian approach to DNN learning helped avoid over-fitting the data and provide confidence intervals over the predictions. The controller's stochastic nature also ensured "Induced Persistency of excitation,"leading to convergence of the overall system signal.

More Details

Reusability First: Toward FAIR Workflows

Proceedings - IEEE International Conference on Cluster Computing, ICCC

Wolf, Matthew; Logan, Jeremy; Mehta, Kshitij; Jacobson, Daniel; Cashman, Mikaela; Walker, Angelica M.; Eisenhauer, Greg; Widener, Patrick W.; Cliff, Ashley

The FAIR principles of open science (Findable, Accessible, Interoperable, and Reusable) have had transformative effects on modern large-scale computational science. In particular, they have encouraged more open access to and use of data, an important consideration as collaboration among teams of researchers accelerates and the use of workflows by those teams to solve problems increases. How best to apply the FAIR principles to workflows themselves, and software more generally, is not yet well understood. We argue that the software engineering concept of technical debt management provides a useful guide for application of those principles to workflows, and in particular that it implies reusability should be considered as 'first among equals'. Moreover, our approach recognizes a continuum of reusability where we can make explicit and selectable the tradeoffs required in workflows for both their users and developers. To this end, we propose a new abstraction approach for reusable workflows, with demonstrations for both synthetic workloads and real-world computational biology workflows. Through application of novel systems and tools that are based on this abstraction, these experimental workflows are refactored to rightsize the granularity of workflow components to efficiently fill the gap between end-user simplicity and general customizability. Our work makes it easier to selectively reason about and automate the connections between trade-offs across user and developer concerns when exposing degrees of freedom for reuse. Additionally, by exposing fine-grained reusability abstractions we enable performance optimizations, as we demonstrate on both institutional-scale and leadership-class HPC resources.

More Details

AC-Optimal Power Flow Solutions with Security Constraints from Deep Neural Network Models

Computer Aided Chemical Engineering

Kilwein, Zachary; Boukouvala, Fani; Laird, Carl D.; Castillo, Anya; Blakely, Logan; Eydenberg, Michael S.; Jalving, Jordan H.; Batsch-Smith, Lisa

In power grid operation, optimal power flow (OPF) problems are solved several times per day to find economically optimal generator setpoints that balance given load demands. Ideally, we seek an optimal solution that is also “N-1 secure”, meaning the system can absorb contingency events such as transmission line or generator failure without loss of service. Current practice is to solve the OPF problem and then check a subset of contingencies against heuristic values, resulting in, at best, suboptimal solutions. Unfortunately, online solution of the OPF problem including the full N-1 contingencies (i.e., two-stage stochastic programming formulation) is intractable for even modest sized electrical grids. To address this challenge, this work presents an efficient method to embed N-1 security constraints into the solution of the OPF by using Neural Network (NN) models to represent the security boundary. Our approach introduces a novel sampling technique, as well as a tuneable parameter to allow operators to balance the conservativeness of the security model within the OPF problem. Our results show that we are able to solve contingency formulations of larger size grids than reported in literature using non-linear programming (NLP) formulations with embedded NN models to local optimality. Solutions found with the NN constraint have marginally increased computational time but are more secure to contingency events.

More Details

Exploration of multifidelity UQ sampling strategies for computer network applications

International Journal for Uncertainty Quantification

Geraci, Gianluca G.; Crussell, Jonathan C.; Swiler, Laura P.; Debusschere, Bert D.

Network modeling is a powerful tool to enable rapid analysis of complex systems that can be challenging to study directly using physical testing. Two approaches are considered: emulation and simulation. The former runs real software on virtualized hardware, while the latter mimics the behavior of network components and their interactions in software. Although emulation provides an accurate representation of physical networks, this approach alone cannot guarantee the characterization of the system under realistic operative conditions. Operative conditions for physical networks are often characterized by intrinsic variability (payload size, packet latency, etc.) or a lack of precise knowledge regarding the network configuration (bandwidth, delays, etc.); therefore uncertainty quantification (UQ) strategies should be also employed. UQ strategies require multiple evaluations of the system with a number of evaluation instances that roughly increases with the problem dimensionality, i.e., the number of uncertain parameters. It follows that a typical UQ workflow for network modeling based on emulation can easily become unattainable due to its prohibitive computational cost. In this paper, a multifidelity sampling approach is discussed and applied to network modeling problems. The main idea is to optimally fuse information coming from simulations, which are a low-fidelity version of the emulation problem of interest, in order to decrease the estimator variance. By reducing the estimator variance in a sampling approach it is usually possible to obtain more reliable statistics and therefore a more reliable system characterization. Several network problems of increasing difficulty are presented. For each of them, the performance of the multifidelity estimator is compared with respect to the single fidelity counterpart, namely, Monte Carlo sampling. For all the test problems studied in this work, the multifidelity estimator demonstrated an increased efficiency with respect to MC.

More Details

EMPIRE-PIC: A performance portable unstructured particle-in-cell code

Communications in Computational Physics

Bettencourt, Matthew T.; Brown, Dominic A.S.; Cartwright, Keith L.; Cyr, Eric C.; Glusa, Christian A.; Lin, Paul T.; Moore, Stan G.; McGregor, Duncan A.O.; Pawlowski, Roger P.; Phillips, Edward G.; Roberts, Nathan V.; Wright, Steven A.; Maheswaran, Satheesh; Jones, John P.; Jarvis, Stephen A.

In this paper we introduce EMPIRE-PIC, a finite element method particle-in-cell (FEM-PIC) application developed at Sandia National Laboratories. The code has been developed in C++ using the Trilinos library and the Kokkos Performance Portability Framework to enable running on multiple modern compute architectures while only requiring maintenance of a single codebase. EMPIRE-PIC is capable of solving both electrostatic and electromagnetic problems in two- and three-dimensions to second-order accuracy in space and time. In this paper we validate the code against three benchmark problems - a simple electron orbit, an electrostatic Langmuir wave, and a transverse electromagnetic wave propagating through a plasma. We demonstrate the performance of EMPIRE-PIC on four different architectures: Intel Haswell CPUs, Intel's Xeon Phi Knights Landing, ARM Thunder-X2 CPUs, and NVIDIA Tesla V100 GPUs attached to IBM POWER9 processors. This analysis demonstrates scalability of the code up to more than two thousand GPUs, and greater than one hundred thousand CPUs.

More Details

Photothermal alternative to device fabrication using atomic precision advanced manufacturing techniques

Journal of Micro/Nanopatterning, Materials and Metrology

Katzenmeyer, Aaron M.; Dmitrovic, Sanja; Baczewski, Andrew D.; Campbell, Quinn C.; Bussmann, Ezra B.; Lu, Tzu-Ming L.; Anderson, Evan M.; Schmucker, Scott W.; Ivie, Jeffrey A.; Campbell, DeAnna M.; Ward, Daniel R.; Scrymgeour, David S.; Wang, George T.; Misra, Shashank M.

The attachment of dopant precursor molecules to depassivated areas of hydrogen-terminated silicon templated with a scanning tunneling microscope (STM) has been used to create electronic devices with subnanometer precision, typically for quantum physics experiments. This process, which we call atomic precision advanced manufacturing (APAM), dopes silicon beyond the solid-solubility limit and produces electrical and optical characteristics that may also be useful for microelectronic and plasmonic applications. However, scanned probe lithography lacks the throughput required to develop more sophisticated applications. Here, we demonstrate and characterize an APAM device workflow where scanned probe lithography of the atomic layer resist has been replaced by photolithography. An ultraviolet laser is shown to locally and controllably heat silicon above the temperature required for hydrogen depassivation on a nanosecond timescale, a process resistant to under- and overexposure. STM images indicate a narrow range of energy density where the surface is both depassivated and undamaged. Modeling that accounts for photothermal heating and the subsequent hydrogen desorption kinetics suggests that the silicon surface temperatures reached in our patterning process exceed those required for hydrogen removal in temperature-programmed desorption experiments. A phosphorus-doped van der Pauw structure made by sequentially photodepassivating a predefined area and then exposing it to phosphine is found to have a similar mobility and higher carrier density compared with devices patterned by STM. Lastly, it is also demonstrated that photodepassivation and precursor exposure steps may be performed concomitantly, a potential route to enabling APAM outside of ultrahigh vacuum.

More Details

Understanding the Effects of DRAM Correctable Error Logging at Scale

Proceedings - IEEE International Conference on Cluster Computing, ICCC

Ferreira, Kurt B.; Levy, Scott; Kuhns, Victor G.; DeBardeleben, Nathan; Blanchard, Sean

Fault tolerance poses a major challenge for future large-scale systems. Current research on fault tolerance has been principally focused on mitigating the impact of uncorrectable errors: errors that corrupt the state of the machine and require a restart from a known good state. However, correctable errors occur much more frequently than uncorrectable errors and may be even more common on future systems. Although an application can safely continue to execute when correctable errors occur, recovery from a correctable error requires the error to be corrected and, in most cases, information about its occurrence to be logged. The potential performance impact of these recovery activities has not been extensively studied in HPC. In this paper, we use simulation to examine the relationship between recovery from correctable errors and application performance for several important extreme-scale workloads. Our paper contains what is, to the best of our knowledge, the first detailed analysis of the impact of correctable errors on application performance. Our study shows that correctable errors can have significant impact on application performance for future systems. We also find that although the focus on correctable errors is focused on reducing failure rates, reducing the time required to log individual errors may have a greater impact on overheads at scale. Finally, this study outlines the error frequency and durations targets to keep correctable overheads similar to that of today's systems. This paper provides critical analysis and insight into the overheads of correctable errors and provides practical advice to systems administrators and hardware designers in an effort to fine-tune performance to application and system characteristics.

More Details

A framework to evaluate IMEX schemes for atmospheric models

Geoscientific Model Development

Guba, Oksana G.; Taylor, Mark A.; Bradley, Andrew M.; Bosler, Peter A.; Steyer, Andrew S.

We present a new evaluation framework for implicit and explicit (IMEX) Runge-Kutta time-stepping schemes. The new framework uses a linearized nonhydrostatic system of normal modes. We utilize the framework to investigate the stability of IMEX methods and their dispersion and dissipation of gravity, Rossby, and acoustic waves. We test the new framework on a variety of IMEX schemes and use it to develop and analyze a set of second-order low-storage IMEX Runge-Kutta methods with a high Courant-Friedrichs-Lewy (CFL) number. We show that the new framework is more selective than the 2-D acoustic system previously used in the literature. Schemes that are stable for the 2-D acoustic system are not stable for the system of normal modes.

More Details

The Hardware of Smaller Clusters (V.3.0)

Lacy, Susan L.; Brightwell, Ronald B.

Chris Saunders and three technologists are in high demand from Sandia’s deep learning teams, and they’re kept busy by building new clusters of computer nodes for researchers who need the power of supercomputing on a smaller scale. Sandia researchers working on Laboratory Directed Research & Development (LDRD) projects, or innovative ideas for solutions on short timeframes, formulate new ideas on old themes and frequently rely on smaller cluster machines to help solve problems before introducing their code to larger HPC resources. These research teams need an agile hardware and software environment where nascent ideas can be tested and cultivated on a smaller scale.

More Details

Extreme Scale Infrasound Inversion and Prediction for Weather Characterization and Acute Event Detection

van Bloemen Waanders, Bart G.; Ober, Curtis C.

Accurate and timely weather predictions are critical to many aspects of society with a profound impact on our economy, general well-being, and national security. In particular, our ability to forecast severe weather systems is necessary to avoid injuries and fatalities, but also important to minimize infrastructure damage and maximize mitigation strategies. The weather community has developed a range of sophisticated numerical models that are executed at various spatial and temporal scales in an attempt to issue global, regional, and local forecasts in pseudo real time. The accuracy however depends on the time period of the forecast, the nonlinearities of the dynamics, and the target spatial resolution. Significant uncertainties plague these predictions including errors in initial conditions, material properties, data, and model approximations. To address these shortcomings, a continuous data collection occurs at an effort level that is even larger than the modeling process. It has been demonstrated that the accuracy of the predictions depends on the quality of the data and is independent to a certain extent on the sophistication of the numerical models. Data assimilation has become one of the more critical steps in the overall weather prediction business and consequently substantial improvements in the quality of the data would have transformational benefits. This paper describes the use of infrasound inversion technology, enabled through exascale computing, that could potentially achieve orders of magnitude improvement in data quality and therefore transform weather predictions with significant impact on many aspects of our society.

More Details

Review of the Carbon Capture Multidisciplinary Science Center (CCMSC) at the University of Utah (2017)

Hoekstra, Robert J.; Malone, C.M.; Montoya, D.R.; Ferencz, R.M.; Kuhl, A.L.; Hoekstra, R.J.; Wagner, J.W.

The review was conducted on May 8-9, 2017 at the University of Utah. Overall the review team was impressed with the work presented and found that the CCMSC had met or exceeded the Year 3 milestones. Specific details, comments, and recommendations are included in this document.

More Details

Efficient, Predictive Tomography of Multi-Qubit Quantum Processors

Blume-Kohout, Robin J.; Nielsen, Erik N.; Rudinger, Kenneth M.; Sarovar, Mohan S.; Young, Kevin C.

After decades of R&D, quantum computers comprising more than 2 qubits are appearing. If this progress is to continue, the research community requires a capability for precise characterization (“tomography”) of these enlarged devices, which will enable benchmarking, improvement, and finally certification as mission-ready. As world leaders in characterization -- our gate set tomography (GST) method is the current state of the art – the project team is keenly aware that every existing protocol is either (1) catastrophically inefficient for more than 2 qubits, or (2) not rich enough to predict device behavior. GST scales poorly, while the popular randomized benchmarking technique only measures a single aggregated error probability. This project explored a new insight: that the combinatorial explosion plaguing standard GST could be avoided by using an ansatz of few-qubit interactions to build a complete, efficient model for multi-qubit errors. We developed this approach, prototyped it, and tested it on a cutting-edge quantum processor developed by Rigetti Quantum Computing (RQC), a US-based startup. We implemented our new models within Sandia’s PyGSTi open-source code, and tested them experimentally on the RQC device by probing crosstalk. We found two major results: first, our schema worked and is viable for further development; second, while the Rigetti device is indeed a “real” 8-qubit quantum processor, its behavior fluctuated significantly over time while we were experimenting with it and this drift made it difficult to fit our models of crosstalk to the data.

More Details

Detecting and tracking drift in quantum information processors

Nature Communications

Proctor, Timothy J.; Revelle, Melissa R.; Nielsen, Erik N.; Rudinger, Kenneth M.; Lobser, Daniel L.; Maunz, Peter; Blume-Kohout, Robin J.; Young, Kevin

If quantum information processors are to fulfill their potential, the diverse errors that affect them must be understood and suppressed. But errors typically fluctuate over time, and the most widely used tools for characterizing them assume static error modes and rates. This mismatch can cause unheralded failures, misidentified error modes, and wasted experimental effort. Here, we demonstrate a spectral analysis technique for resolving time dependence in quantum processors. Our method is fast, simple, and statistically sound. It can be applied to time-series data from any quantum processor experiment. We use data from simulations and trapped-ion qubit experiments to show how our method can resolve time dependence when applied to popular characterization protocols, including randomized benchmarking, gate set tomography, and Ramsey spectroscopy. In the experiments, we detect instability and localize its source, implement drift control techniques to compensate for this instability, and then demonstrate that the instability has been suppressed.

More Details
Results 1001–1025 of 9,998
Results 1001–1025 of 9,998