Publications

Results 9301–9325 of 9,998
Skip to search filters

A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method

Computer Methods in Applied Mechanics and Engineering

Hughes, Thomas J.R.; Scovazzi, Guglielmo S.; Bochev, Pavel B.; Buffa, Annalisa

Proliferation of degrees-of-freedom has plagued discontinuous Galerkin methodology from its inception over 30 years ago. This paper develops a new computational formulation that combines the advantages of discontinuous Galerkin methods with the data structure of their continuous Galerkin counterparts. The new method uses local, element-wise problems to project a continuous finite element space into a given discontinuous space, and then applies a discontinuous Galerkin formulation. The projection leads to parameterization of the discontinuous degrees-of-freedom by their continuous counterparts and has a variational multiscale interpretation. This significantly reduces the computational burden and, at the same time, little or no degradation of the solution occurs. In fact, the new method produces improved solutions compared with the traditional discontinuous Galerkin method in some situations. © 2005 Elsevier B.V. All rights reserved.

More Details

Verification of LHS distributions

Swiler, Laura P.

This document provides verification test results for normal, lognormal, and uniform distributions that are used in Sandia's Latin Hypercube Sampling (LHS) software. The purpose of this testing is to verify that the sample values being generated in LHS are distributed according to the desired distribution types. The testing of distribution correctness is done by examining summary statistics, graphical comparisons using quantile-quantile plots, and format statistical tests such as the Chisquare test, the Kolmogorov-Smirnov test, and the Anderson-Darling test. The overall results from the testing indicate that the generation of normal, lognormal, and uniform distributions in LHS is acceptable.

More Details

Multilinear operators for higher-order decompositions

Kolda, Tamara G.; Dunlavy, Daniel D.; Kegelmeyer, William P.

We propose two new multilinear operators for expressing the matrix compositions that are needed in the Tucker and PARAFAC (CANDECOMP) decompositions. The first operator, which we call the Tucker operator, is shorthand for performing an n-mode matrix multiplication for every mode of a given tensor and can be employed to concisely express the Tucker decomposition. The second operator, which we call the Kruskal operator, is shorthand for the sum of the outer-products of the columns of N matrices and allows a divorce from a matricized representation and a very concise expression of the PARAFAC decomposition. We explore the properties of the Tucker and Kruskal operators independently of the related decompositions. Additionally, we provide a review of the matrix and tensor operations that are frequently used in the context of tensor decompositions.

More Details

Iterative optimized effective potential and exact exchange calculations at finite temperature

Modine, N.A.; Wright, Alan F.; Muller, Richard P.; Sears, Mark P.; Wills, Ann E.; Desjarlais, Michael P.

We report the implementation of an iterative scheme for calculating the Optimized Effective Potential (OEP). Given an energy functional that depends explicitly on the Kohn-Sham wave functions, and therefore, implicitly on the local effective potential appearing in the Kohn-Sham equations, a gradient-based minimization is used to find the potential that minimizes the energy. Previous work has shown how to find the gradient of such an energy with respect to the effective potential in the zero-temperature limit. We discuss a density-matrix-based derivation of the gradient that generalizes the previous results to the finite temperature regime, and we describe important optimizations used in our implementation. We have applied our OEP approach to the Hartree-Fock energy expression to perform Exact Exchange (EXX) calculations. We report our EXX results for common semiconductors and ordered phases of hydrogen at zero and finite electronic temperatures. We also discuss issues involved in the implementation of forces within the OEP/EXX approach.

More Details
Results 9301–9325 of 9,998
Results 9301–9325 of 9,998