Publications

Results 251–275 of 315
Skip to search filters

PuLP: Scalable multi-objective multi-constraint partitioning for small-world networks

Proceedings - 2014 IEEE International Conference on Big Data, IEEE Big Data 2014

Slota, George M.; Madduri, Kamesh; Rajamanickam, Sivasankaran R.

We present PuLP, a parallel and memory-efficient graph partitioning method specifically designed to partition low-diameter networks with skewed degree distributions. Graph partitioning is an important Big Data problem because it impacts the execution time and energy efficiency of graph analytics on distributed-memory platforms. Partitioning determines the in-memory layout of a graph, which affects locality, intertask load balance, communication time, and overall memory utilization of graph analytics. A novel feature of our method PuLP (Partitioning using Label Propagation) is that it optimizes for multiple objective metrics simultaneously, while satisfying multiple partitioning constraints. Using our method, we are able to partition a web crawl with billions of edges on a single compute server in under a minute. For a collection of test graphs, we show that PuLP uses 8-39× less memory than state-of-the-art partitioners and is up to 14.5× faster, on average, than alternate approaches (with 16-way parallelism). We also achieve better partitioning quality results for the multi-objective scenario.

More Details

A hybrid approach for parallel transistor-level full-chip circuit simulation

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Thornquist, Heidi K.; Rajamanickam, Sivasankaran R.

The computer-aided design (CAD) applications that are fundamental to the electronic design automation industry need to harness the available hardware resources to be able to perform full-chip simulation for modern technology nodes (45nm and below). We will present a hybrid (MPI+threads) approach for parallel transistor-level transient circuit simulation that achieves scalable performance for some challenging large-scale integrated circuits. This approach focuses on the computationally expensive part of the simulator: the linear system solve. Hybrid versions of two iterative linear solver strategies are presented, one takes advantage of block triangular form structure while the other uses a Schur complement technique. Results indicate up to a 27x improvement in total simulation time on 256 cores.

More Details

Towards extreme-scale simulations for low mach fluids with second-generation trilinos

Parallel Processing Letters

Lin, Paul L.; Bettencourt, Matthew T.; Domino, Stefan P.; Fisher, Travis C.; Hoemmen, Mark F.; Hu, Jonathan J.; Phipps, Eric T.; Prokopenko, Andrey V.; Rajamanickam, Sivasankaran R.; Siefert, Christopher S.; Kennon, Stephen

Trilinos is an object-oriented software framework for the solution of large-scale, complex multi-physics engineering and scientific problems. While Trilinos was originally designed for scalable solutions of large problems, the fidelity needed by many simulations is significantly greater than what one could have envisioned two decades ago. When problem sizes exceed a billion elements even scalable applications and solver stacks require a complete revision. The second-generation Trilinos employs C++ templates in order to solve arbitrarily large problems. We present a case study of the integration of Trilinos with a low Mach fluids engineering application (SIERRA low Mach module/Nalu). Through the use of improved algorithms and better software engineering practices, we demonstrate good weak scaling for up to a nine billion element large eddy simulation (LES) problem on unstructured meshes with a 27 billion row matrix on 524,288 cores of an IBM Blue Gene/Q platform.

More Details

Using architecture information and real-time resource state to reduce power consumption and communication costs in parallel applications

Brandt, James M.; Devine, Karen D.; Gentile, Ann C.; Leung, Vitus J.; Olivier, Stephen L.; Pedretti, Kevin P.; Rajamanickam, Sivasankaran R.; Bunde, David P.; Deveci, Mehmet D.; Catalyurek, Umit V.

As computer systems grow in both size and complexity, the need for applications and run-time systems to adjust to their dynamic environment also grows. The goal of the RAAMP LDRD was to combine static architecture information and real-time system state with algorithms to conserve power, reduce communication costs, and avoid network contention. We devel- oped new data collection and aggregation tools to extract static hardware information (e.g., node/core hierarchy, network routing) as well as real-time performance data (e.g., CPU uti- lization, power consumption, memory bandwidth saturation, percentage of used bandwidth, number of network stalls). We created application interfaces that allowed this data to be used easily by algorithms. Finally, we demonstrated the benefit of integrating system and application information for two use cases. The first used real-time power consumption and memory bandwidth saturation data to throttle concurrency to save power without increasing application execution time. The second used static or real-time network traffic information to reduce or avoid network congestion by remapping MPI tasks to allocated processors. Results from our work are summarized in this report; more details are available in our publications [2, 6, 14, 16, 22, 29, 38, 44, 51, 54].

More Details

Computer Science Research Institute (CSRI) Summer Proceedings 2013

Rajamanickam, Sivasankaran R.; Parks, Michael L.; Collis, Samuel S.

The Computer Science Research Institute (CSRI) brings university faculty and students to Sandia National Laboratories for focused collaborative research on computer science, computational science, and mathematics problems that are critical to the mission of the laboratories, the Department of Energy, and the United States. The CSRI provides a mechanism by which university researchers learn about and impact national— and global—scale problems while simultaneously bringing new ideas from the academic research community to bear on these important problems. A key component of CSRI programs over the last decade has been an active and productive summer program where students from around the country conduct internships at CSRI. Each student is paired with a Sandia staff member who serves as technical advisor and mentor. The goals of the summer program are to expose the students to research in mathematical and computer sciences at Sandia and to conduct a meaningful and impactful summer research project with their Sandia mentor. Every effort is made to align summer projects with the student's research objectives and all work is coordinated with the ongoing research activities of the Sandia mentor in alignment with Sandia technical thrusts. For the 2013 CSRI Proceedings, research articles have been organized into the following broad technical focus areas — Computational Mathematics and Algorithms, Combinatorial Algorithms and Visualization, Advanced Architectures and Systems Software, Computational Applications — which are well aligned with Sandia's strategic thrusts in computer and information sciences.

More Details
Results 251–275 of 315
Results 251–275 of 315