Publications

Results 101–125 of 163
Skip to search filters

Peridynamics as a rigorous coarse-graining of atomistics for multiscale materials design

Aidun, John B.; Kamm, James R.; Lehoucq, Richard B.; Parks, Michael L.; Sears, Mark P.; Silling, Stewart A.

This report summarizes activities undertaken during FY08-FY10 for the LDRD Peridynamics as a Rigorous Coarse-Graining of Atomistics for Multiscale Materials Design. The goal of our project was to develop a coarse-graining of finite temperature molecular dynamics (MD) that successfully transitions from statistical mechanics to continuum mechanics. The goal of our project is to develop a coarse-graining of finite temperature molecular dynamics (MD) that successfully transitions from statistical mechanics to continuum mechanics. Our coarse-graining overcomes the intrinsic limitation of coupling atomistics with classical continuum mechanics via the FEM (finite element method), SPH (smoothed particle hydrodynamics), or MPM (material point method); namely, that classical continuum mechanics assumes a local force interaction that is incompatible with the nonlocal force model of atomistic methods. Therefore FEM, SPH, and MPM inherit this limitation. This seemingly innocuous dichotomy has far reaching consequences; for example, classical continuum mechanics cannot resolve the short wavelength behavior associated with atomistics. Other consequences include spurious forces, invalid phonon dispersion relationships, and irreconcilable descriptions/treatments of temperature. We propose a statistically based coarse-graining of atomistics via peridynamics and so develop a first of a kind mesoscopic capability to enable consistent, thermodynamically sound, atomistic-to-continuum (AtC) multiscale material simulation. Peridynamics (PD) is a microcontinuum theory that assumes nonlocal forces for describing long-range material interaction. The force interactions occurring at finite distances are naturally accounted for in PD. Moreover, PDs nonlocal force model is entirely consistent with those used by atomistics methods, in stark contrast to classical continuum mechanics. Hence, PD can be employed for mesoscopic phenomena that are beyond the realms of classical continuum mechanics and atomistic simulations, e.g., molecular dynamics and density functional theory (DFT). The latter two atomistic techniques are handicapped by the onerous length and time scales associated with simulating mesoscopic materials. Simulating such mesoscopic materials is likely to require, and greatly benefit from multiscale simulations coupling DFT, MD, PD, and explicit transient dynamic finite element methods FEM (e.g., Presto). The proposed work fills the gap needed to enable multiscale materials simulations.

More Details

Peridynamic theory of solid mechanics

Proposed for publication in Advances in Applied Mechanics.

Silling, Stewart A.; Lehoucq, Richard B.

The peridynamic theory of mechanics attempts to unite the mathematical modeling of continuous media, cracks, and particles within a single framework. It does this by replacing the partial differential equations of the classical theory of solid mechanics with integral or integro-differential equations. These equations are based on a model of internal forces within a body in which material points interact with each other directly over finite distances. The classical theory of solid mechanics is based on the assumption of a continuous distribution of mass within a body. It further assumes that all internal forces are contact forces that act across zero distance. The mathematical description of a solid that follows from these assumptions relies on partial differential equations that additionally assume sufficient smoothness of the deformation for the PDEs to make sense in either their strong or weak forms. The classical theory has been demonstrated to provide a good approximation to the response of real materials down to small length scales, particularly in single crystals, provided these assumptions are met. Nevertheless, technology increasingly involves the design and fabrication of devices at smaller and smaller length scales, even interatomic dimensions. Therefore, it is worthwhile to investigate whether the classical theory can be extended to permit relaxed assumptions of continuity, to include the modeling of discrete particles such as atoms, and to allow the explicit modeling of nonlocal forces that are known to strongly influence the behavior of real materials.

More Details

Final report LDRD project 105816 : model reduction of large dynamic systems with localized nonlinearities

Lehoucq, Richard B.; Dohrmann, Clark R.; Segalman, Daniel J.

Advanced computing hardware and software written to exploit massively parallel architectures greatly facilitate the computation of extremely large problems. On the other hand, these tools, though enabling higher fidelity models, have often resulted in much longer run-times and turn-around-times in providing answers to engineering problems. The impediments include smaller elements and consequently smaller time steps, much larger systems of equations to solve, and the inclusion of nonlinearities that had been ignored in days when lower fidelity models were the norm. The research effort reported focuses on the accelerating the analysis process for structural dynamics though combinations of model reduction and mitigation of some factors that lead to over-meshing.

More Details

Implementing peridynamics within a molecular dynamics code

Computer Physics Communications

Parks, Michael L.; Lehoucq, Richard B.; Plimpton, Steven J.; Silling, Stewart A.

Peridynamics (PD) is a continuum theory that employs a nonlocal model to describe material properties. In this context, nonlocal means that continuum points separated by a finite distance may exert force upon each other. A meshless method results when PD is discretized with material behavior approximated as a collection of interacting particles. This paper describes how PD can be implemented within a molecular dynamics (MD) framework, and provides details of an efficient implementation. This adds a computational mechanics capability to an MD code, enabling simulations at mesoscopic or even macroscopic length and time scales. © 2008 Elsevier B.V.

More Details

Peridynamics with LAMMPS : a user guide

Parks, Michael L.; Plimpton, Steven J.; Lehoucq, Richard B.; Silling, Stewart A.

Peridynamics is a nonlocal formulation of continuum mechanics. The discrete peridynamic model has the same computational structure as a molecular dynamic model. This document details the implementation of a discrete peridynamic model within the LAMMPS molecular dynamic code. This document provides a brief overview of the peridynamic model of a continuum, then discusses how the peridynamic model is discretized, and overviews the LAMMPS implementation. A nontrivial example problem is also included.

More Details

Statistical coarse-graining of molecular dynamics into peridynamics

Lehoucq, Richard B.; Silling, Stewart A.

This paper describes an elegant statistical coarse-graining of molecular dynamics at finite temperature into peridynamics, a continuum theory. Peridynamics is an efficient alternative to molecular dynamics enabling dynamics at larger length and time scales. In direct analogy with molecular dynamics, peridynamics uses a nonlocal model of force and does not employ stress/strain relationships germane to classical continuum mechanics. In contrast with classical continuum mechanics, the peridynamic representation of a system of linear springs and masses is shown to have the same dispersion relation as the original spring-mass system.

More Details
Results 101–125 of 163
Results 101–125 of 163