Publications

Results 101–124 of 124
Skip to search filters

First-principles approach to the charge-transport characteristics of monolayer molecular-electronics devices: Application to hexanedithiolate devices

Physical Review B - Condensed Matter and Materials Physics

Kim, Yong H.; Tahir-Kheli, Jamil; Schultz, Peter A.; Goddard, William A.

We report on the development of an accurate first-principles computational scheme for the charge transport characteristics of molecular monolayer junctions and its application to hexanedithiolate (C6DT) devices. Starting from the Gaussian basis set density-functional calculations of a junction model in the slab geometry and corresponding two bulk electrodes, we obtain the transmission function using the matrix Green's function method and analyze the nature of transmission channels via atomic projected density of states. Within the developed formalism, by treating isolated molecules with the supercell approach, we can investigate the current-voltage characteristics of single and parallel molecular wires in a consistent manner. For the case of single C6DT molecules stretched between Au(111) electrodes, we obtain reasonable quantitative agreement of computed conductance with a recent scanning tunneling microscope experiment result. Comparing the charge transport properties of C6DT single molecules and their monolayer counterparts in the stretched and tilted geometries, we find that the effect of intermolecular coupling and molecule tilting on the charge transport characteristics is negligible in these devices. We contrast this behavior to that of the π -conjugated biphenyldithiolate devices we have previously considered and discuss the relative importance of molecular cores and molecule-electrode contacts for the charge transport in those devices. © 2006 The American Physical Society.

More Details

Electronic structure of intrinsic defects in crystalline germanium telluride

Physical Review B - Condensed Matter and Materials Physics

Edwards, Arthur H.; Pineda, Andrew C.; Schultz, Peter A.; Martin, Marcus G.; Thompson, Aidan P.; Hjalmarson, Harold P.; Umrigar, Cyrus J.

Germanium telluride undergoes rapid transition between polycrystalline and amorphous states under either optical or electrical excitation. While the crystalline phases are predicted to be semiconductors, polycrystalline germanium telluride always exhibits p -type metallic conductivity. We present a study of the electronic structure and formation energies of the vacancy and antisite defects in both known crystalline phases. We show that these intrinsic defects determine the nature of free-carrier transport in crystalline germanium telluride. Germanium vacancies require roughly one-third the energy of the other three defects to form, making this by far the most favorable intrinsic defect. While the tellurium antisite and vacancy induce gap states, the germanium counterparts do not. A simple counting argument, reinforced by integration over the density of states, predicts that the germanium vacancy leads to empty states at the top of the valence band, thus giving a complete explanation of the observed p -type metallic conduction.

More Details

Density functional theory study of transition metal porphine adsorption on gold surface and electric field induced conformation changes

Proposed for publication in the Journal of the American Chemical Society.

Rempe, Susan R.; Schultz, Peter A.; Chandross, M.

We apply density functional theory (DFT) and the DFT+U technique to study the adsorption of transition metal porphine molecules on atomistically flat Au(111) surfaces. DFT calculations using the Perdew?Burke?Ernzerhof exchange correlation functional correctly predict the palladium porphine (PdP) low-spin ground state. PdP is found to adsorb preferentially on gold in a flat geometry, not in an edgewise geometry, in qualitative agreement with experiments on substituted porphyrins. It exhibits no covalent bonding to Au(111), and the binding energy is a small fraction of an electronvolt. The DFT+U technique, parametrized to B3LYP-predicted spin state ordering of the Mn d-electrons, is found to be crucial for reproducing the correct magnetic moment and geometry of the isolated manganese porphine (MnP) molecule. Adsorption of Mn(II)P on Au(111) substantially alters the Mn ion spin state. Its interaction with the gold substrate is stronger and more site-specific than that of PdP. The binding can be partially reversed by applying an electric potential, which leads to significant changes in the electronic and magnetic properties of adsorbed MnP and 0.1 {angstrom} changes in the Mn-nitrogen distances within the porphine macrocycle. We conjecture that this DFT+U approach may be a useful general method for modeling first-row transition metal ion complexes in a condensed-matter setting.

More Details

Supercell issues in density functional calculations

Schultz, Peter A.

Simulations within density functional theory (DFT) are a common component of research into the physics of materials. With the broad success of DFT, it is easily forgotten that computational DFT methods invariably do not directly represent simulated properties, but require careful construction of models that are computable approximations to a physical property. Perhaps foremost among these computational considerations is the routine use of the supercell approximation to construct finite models to represent infinite systems. Pitfalls in using supercells (k-space sampling, boundary conditions, cell sizes) are often underappreciated. We present examples (e.g. vacancy defects) that exhibit a surprising or significant dependence on supercells, and describe workable solutions. We describe procedures needed to construct meaningful models for simulations of real material systems, focusing on k-space and cell size issues.

More Details

Spontaneous ionization of hydrogen atoms at the Si-SiO2 interface

Proposed for publication in Physical Review B.

Hjalmarson, Harold P.; Edwards, Arthur H.; Schultz, Peter A.; Hjalmarson, Harold P.

We present a series of electronic structure calculations that demonstrate a mechanism for spontaneous ionization of hydrogen at the Si-SiO{sub 2} interface. Specifically, we show that an isolated neutral hydrogen atom will spontaneously give up its charge and bond to a threefold coordinated oxygen atom. We refer to this entity as a proton. We have calculated the potential surface and found it to be entirely attractive. In contrast, hydrogen molecules will not undergo an analogous reaction. We relate these calculations both to proton generation experiments and to hydrogen plasma experiments.

More Details

BaO/W(100) thermionic emitters and the effects of Sc, Y, La, and the density functional used in computations

Proposed for publication in Surface Science Letters.

Jennison, Dwight R.; Jennison, Dwight R.; Schultz, Peter A.; King, Donald B.; Zavadil, Kevin R.

Density functional theory is used to predict workfunctions, {psi}. For relaxed clean W(1 0 0), the local density approximation (LDA) agrees with experiment better than the newer generalized gradient approximation, probably due to the surface electron self-energy. The large Ba metallic radius indicates it covers W(1 0 0) at about 0.5 monolayer (ML). However, Ba{sup 2+}, O{sup 2-}, and metallic W all have similar radii. Thus 1 ML of BaO (one BaO unit for each two W atoms) produces minimum strain, indicating commensurate interfaces. BaO (1 ML) and Ba (1/2 ML) have the same {psi} to within 0.02 V, so at these coverages reduction or oxidation is not important. Due to greater chemical activity of ScO vs. highly ionic BaO, when mixing the latter with this suboxide of scandia, the overlayer always has BaO as the top layer and ScO as the second layer. The BaO/ScO bilayer has a rocksalt structure, suggesting high stability. In the series BaO/ScO/, BaO/YO/, and BaO/LaO/W(1 0 0), the latter has a remarkably low {psi} of 1.3 V (LDA), but 2 ML of rocksalt BaO also has {psi} at 1.3 V. We suggest BaO (1 ML) does not exist and that it is worthwhile to attempt the direct synthesis and study of BaO (2 ML) and BaO/LaO.

More Details

Fast through-bond diffusion of nitrogen in silicon

Applied Physics Letters

Schultz, Peter A.; Nelson, Jeffrey S.

We report first-principles total energy calculations of interaction of nitrogen in silicon with silicon self-interstitials. Substitutional nitrogen captures a silicon interstitial with 3.5 eV binding energy forming a (100) split interstitial ground-state geometry, with the nitrogen forming three bonds. The low-energy migration path is through a bond bridge state having two bonds. Fast diffusion of nitrogen occurs through a pure interstitialcy mechanism: the nitrogen never has less than two bonds. Near-zero formation energy of the nitrogen interstitialcy with respect to the substitutional rationalizes the low solubility of substitutional nitrogen in silicon. © 2001 American Institute of Physics.

More Details

Unconstrained and Constrained Minimization, Linear Scaling, and the Grassmann Manifold: Theory and Applications

Physical Review B

Lippert, Ross A.; Schultz, Peter A.

An unconstrained minimization algorithm for electronic structure calculations using density functional for systems with a gap is developed to solve for nonorthogonal Wannier-like orbitals in the spirit of E. B. Stechel, A. R. Williams, and P. J. Feibelman, Phys. Rev. B 49, 10,008 (1994). The search for the occupied sub-space is a Grassmann conjugate gradient algorithm generalized from the algorithm of A. Edelman, T.A. Arias, and S. T. Smith, SIAM J. on Matrix Anal. Appl. 20, 303 (1998). The gradient takes into account the nonorthogonality of a local atom-centered basis, gaussian in their implementation. With a localization constraint on the Wannier-like orbitals, well-constructed sparse matrix multiplies lead to O(N) scaling of the computationally intensive parts of the algorithm. Using silicon carbide as a test system, the accuracy, convergence, and implementation of this algorithm as a quantitative alternative to diagonalization are investigated. Results up to 1,458 atoms on a single processor are presented.

More Details
Results 101–124 of 124
Results 101–124 of 124

Current Filters

Clear all