Publications

Results 101–125 of 212
Skip to search filters

A conservative, optimization-based semi-lagrangian spectral element method for passive tracer transport

COUPLED PROBLEMS 2015 - Proceedings of the 6th International Conference on Coupled Problems in Science and Engineering

Bochev, Pavel B.; Moe, Scott A.; Peterson, Kara J.; Ridzal, Denis R.

We present a new optimization-based, conservative, and quasi-monotone method for passive tracer transport. The scheme combines high-order spectral element discretization in space with semi-Lagrangian time stepping. Solution of a singly linearly constrained quadratic program with simple bounds enforces conservation and physically motivated solution bounds. The scheme can handle efficiently a large number of passive tracers because the semi-Lagrangian time stepping only needs to evolve the grid points where the primitive variables are stored and allows for larger time steps than a conventional explicit spectral element method. Numerical examples show that the use of optimization to enforce physical properties does not affect significantly the spectral accuracy for smooth solutions. Performance studies reveal the benefits of high-order approximations, including for discontinuous solutions.

More Details

A variational flux recovery approach for elastodynamics problems with interfaces

PANACM 2015 - 1st Pan-American Congress on Computational Mechanics, in conjunction with the 11th Argentine Congress on Computational Mechanics, MECOM 2015

Bochev, Pavel B.; Kuberry, Paul A.

We present a new explicit algorithm for linear elastodynamic problems with material interfaces. The method discretizes the governing equations independently on each material subdomain and then connects them by exchanging forces and masses across the material interface. Variational flux recovery techniques provide the force and mass approximations. The new algorithm has attractive computational properties. It allows different discretizations on each material subdomain and enables partitioned solution of the discretized equations. The method passes a linear patch test and recovers the solution of a monolithic discretization of the governing equations when interface grids match.

More Details

A locally conservative high-order least-squares formulation in curvilinear coordinates

Lecture Notes in Computational Science and Engineering

Gerritsma, Marc; Bochev, Pavel B.

We present a locally conservative spectral least-squares formulation for the scalar diffusion-reaction equation in curvilinear coordinates. Careful selection of a least squares functional and compatible finite dimensional subspaces for the solution space yields the conservation properties. Numerical examples confirm the theoretical properties of the method.

More Details

Optimization-based coupling of nonlocal and local diffusion models

Materials Research Society Symposium Proceedings

D'Elia, Marta D.; Bochev, Pavel B.

In this work we introduce an optimization-based method for the coupling of nonlocal and local diffusion problems. Our approach is formulated as a control problem where the states are the solutions of the nonlocal and local equations, the controls are the nonlocal volume constraint and the local boundary condition, and the objective of the optimization is a matching functional for the state variables in the intersection of the nonlocal and local domains. For finite element discretizations we present numerical results in a one-dimensional setting; though preliminary, our tests show the consistency and efficacy of the method, and provide the basis for realistic simulations.

More Details

A spectral mimetic least-squares method

Computers and Mathematics with Applications (Oxford)

Bochev, Pavel B.

We present a spectral mimetic least-squares method for a model diffusion–reaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are also satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.

More Details

Electromagnetic Extended Finite Elements for High-Fidelity Multimaterial Problems LDRD Final Report

Siefert, Christopher S.; Bochev, Pavel B.; Kramer, Richard M.; Voth, Thomas E.; Cox, James C.

Surface effects are critical to the accurate simulation of electromagnetics (EM) as current tends to concentrate near material surfaces. Sandia EM applications, which include exploding bridge wires for detonator design, electromagnetic launch of flyer plates for material testing and gun design, lightning blast-through for weapon safety, electromagnetic armor, and magnetic flux compression generators, all require accurate resolution of surface effects. These applications operate in a large deformation regime, where body-fitted meshes are impractical and multimaterial elements are the only feasible option. State-of-the-art methods use various mixture models to approximate the multi-physics of these elements. The empirical nature of these models can significantly compromise the accuracy of the simulation in this very important surface region. We propose to substantially improve the predictive capability of electromagnetic simulations by removing the need for empirical mixture models at material surfaces. We do this by developing an eXtended Finite Element Method (XFEM) and an associated Conformal Decomposition Finite Element Method (CDFEM) which satisfy the physically required compatibility conditions at material interfaces. We demonstrate the effectiveness of these methods for diffusion and diffusion-like problems on node, edge and face elements in 2D and 3D. We also present preliminary work on h -hierarchical elements and remap algorithms.

More Details
Results 101–125 of 212
Results 101–125 of 212