Publications

Results 101–125 of 185
Skip to search filters

Overview of selected DOE/NNSA predictive science initiatives: The predictive science academic alliance program and the DAKOTA project

53rd AIAA Aerospace Sciences Meeting

Eldred, Michael S.; Swiler, Laura P.; Adams, Brian M.; Jakeman, J.D.

This paper supports a special session on "Frontiers of Uncertainty Management for Com- plex Aerospace Systems" with the intent of summarizing two aspects of the DOE/NNSA Accelerated Strategic Computing (ASC) program, each of which is focused on predictive science using complex simulation models. The first aspect is academic outreach, as enabled by the Predictive Science Academic Alliance Program (PSAAP). The second aspect is the Dakota project at Sandia National Laboratories, which develops and deploys uncertainty quantification capabilities focused on high fidelity modeling and simulation on large-scale parallel computers.

More Details

Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

Journal of Aerospace Information Systems

Safta, Cosmin S.; Sargsyan, Khachik S.; Najm, H.N.; Chowdhary, Kenny; Debusschere, Bert D.; Swiler, Laura P.; Eldred, Michael S.

In this paper, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory-epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

More Details

Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis :

Adams, Brian M.; Jakeman, John D.; Swiler, Laura P.; Stephens, John A.; Vigil, Dena V.; Wildey, Timothy M.; Bauman, Lara E.; Bohnhoff, William J.; Dalbey, Keith D.; Eddy, John P.; Ebeida, Mohamed S.; Eldred, Michael S.; Hough, Patricia D.; Hu, Kenneth H.

The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

More Details

Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis version 6.0 theory manual

Adams, Brian M.; Jakeman, John D.; Swiler, Laura P.; Stephens, John A.; Vigil, Dena V.; Wildey, Timothy M.; Bauman, Lara E.; Bohnhoff, William J.; Dalbey, Keith D.; Eddy, John P.; Ebeida, Mohamed S.; Eldred, Michael S.; Hough, Patricia D.; Hu, Kenneth H.

The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the Dakota software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of Dakota-related research publications in the areas of surrogate-based optimization, uncertainty quanti cation, and optimization under uncertainty that provide the foundation for many of Dakota's iterative analysis capabilities.

More Details

Sensitivity analysis techniques applied to a system of hyperbolic conservation laws

Reliability Engineering and System Safety

Weirs, V.G.; Kamm, James R.; Swiler, Laura P.; Tarantola, Stefano; Ratto, Marco; Adams, Brian M.; Rider, William J.; Eldred, Michael S.

Sensitivity analysis is comprised of techniques to quantify the effects of the input variables on a set of outputs. In particular, sensitivity indices can be used to infer which input parameters most significantly affect the results of a computational model. With continually increasing computing power, sensitivity analysis has become an important technique by which to understand the behavior of large-scale computer simulations. Many sensitivity analysis methods rely on sampling from distributions of the inputs. Such sampling-based methods can be computationally expensive, requiring many evaluations of the simulation; in this case, the Sobol method provides an easy and accurate way to compute variance-based measures, provided a sufficient number of model evaluations are available. As an alternative, meta-modeling approaches have been devised to approximate the response surface and estimate various measures of sensitivity. In this work, we consider a variety of sensitivity analysis methods, including different sampling strategies, different meta-models, and different ways of evaluating variance-based sensitivity indices. The problem we consider is the 1-D Riemann problem. By a careful choice of inputs, discontinuous solutions are obtained, leading to discontinuous response surfaces; such surfaces can be particularly problematic for meta-modeling approaches. The goal of this study is to compare the estimated sensitivity indices with exact values and to evaluate the convergence of these estimates with increasing samples sizes and under an increasing number of meta-model evaluations. © 2011 Elsevier Ltd. All rights reserved.

More Details
Results 101–125 of 185
Results 101–125 of 185