Electricity markets rely on the rapid solution of the optimal power flow (OPF) problem to determine generator power levels and set nodal prices. Traditionally, the OPF problem has been formulated using linearized, approximate models, ignoring nonlinear alternating current (AC) physics. These approaches do not guarantee global optimality or even feasibility in the real ACOPF problem. We introduce an outer-approximation approach to solve the ACOPF problem to global optimality based on alternating solution of upper- and lower-bounding problems. The lower-bounding problem is a piecewise relaxation based on strong second-order cone relaxations of the ACOPF, and these piecewise relaxations are selectively refined at each major iteration through increased variable domain partitioning. Our approach is able to efficiently solve all but one of the test cases considered to an optimality gap below 0.1%. Furthermore, this approach opens the door for global solution of MINLP problems with AC power flow equations.
The solution of the Optimal Power Flow (OPF) and Unit Commitment (UC) problems (i.e., determining generator schedules and set points that satisfy demands) is critical for efficient and reliable operation of the electricity grid. For computational efficiency, the alternating current OPF (ACOPF) problem is usually formulated with a linearized transmission model, often referred to as the DCOPF problem. However, these linear approximations do not guarantee global optimality or even feasibility for the true nonlinear alternating current (AC) system. Nonlinear AC power flow models can and should be used to improve model fidelity, but successful global solution of problems with these models requires the availability of strong relaxations of the AC optimal power flow constraints. In this paper, we use McCormick envelopes to strengthen the well-known second-order cone (SOC) relaxation of the ACOPF problem. With this improved relaxation, we can further include tight bounds on the voltages at the reference bus, and this paper demonstrates the effectiveness of this for improved bounds tightening. We present results on the optimality gap of both the base SOC relaxation and our Strengthened SOC (SSOC) relaxation for the National Information and Communications Technology Australia (NICTA) Energy System Test Case Archive (NESTA). For the cases where the SOC relaxation yields an optimality gap more than 0.1 %, the SSOC relaxation with bounds tightening further reduces the optimality gap by an average of 67 % and ultimately reduces the optimality gap to less than 0.1 % for 58 % of all the NESTA cases considered. Stronger relaxations enable more efficient global solution of the ACOPF problem and can improve computational efficiency of MINLP problems with AC power flow constraints, e.g., unit commitment.
Drinking water systems face multiple challenges, including aging infrastructure, water quality concerns, uncertainty in supply and demand, natural disasters, environmental emergencies, and cyber and terrorist attacks. All of these have the potential to disrupt a large portion of a water system causing damage to infrastructure and outages to customers. Increasing resilience to these types of hazards is essential to improving water security. As one of the United States (US) sixteen critical infrastructure sectors, drinking water is a national priority. The National Infrastructure Advisory Council defined infrastructure resilience as “the ability to reduce the magnitude and/or duration of disruptive events. The effectiveness of a resilient infrastructure or enterprise depends upon its ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially disruptive event”. Being able to predict how drinking water systems will perform during disruptive incidents and understanding how to best absorb, recover from, and more successfully adapt to such incidents can help enhance resilience.
Water utilities are vulnerable to a wide variety of human-caused and natural disasters. The Water Network Tool for Resilience (WNTR) is a new open source Python™ package designed to help water utilities investigate resilience of water distribution systems to hazards and evaluate resilience-enhancing actions. In this paper, the WNTR modeling framework is presented and a case study is described that uses WNTR to simulate the effects of an earthquake on a water distribution system. The case study illustrates that the severity of damage is not only a function of system integrity and earthquake magnitude, but also of the available resources and repair strategies used to return the system to normal operating conditions. While earthquakes are particularly concerning since buried water distribution pipelines are highly susceptible to damage, the software framework can be applied to other types of hazards, including power outages and contamination incidents.