Sparse matrix-matrix multiplication is a key kernel that has applications in several domains such as scientific computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix-matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, KKSPGEMM, to choose the right algorithm and data structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.
Architectures with multiple classes of memory media are becoming a common part of mainstream supercomputer deployments. So called multi-level memories offer differing characteristics for each memory component including variation in bandwidth, latency and capacity. This paper investigates the performance of sparse matrix multiplication kernels on two leading highperformance computing architectures — Intel's Knights Landing processor and NVIDIA's Pascal GPU. We describe a data placement method and a chunking-based algorithm for our kernels that exploits the existence of the multiple memory spaces in each hardware platform. We evaluate the performance of these methods w.r.t. standard algorithms using the auto-caching mechanisms Our results show that standard algorithms that exploit cache reuse performed as well as multi-memory-aware algorithms for architectures such as Ki\iLs where the memory subsystems have similar latencies. However, for architectures such as GPUS where memory subsystems differ significantly in both bandwidth and latency, multi-memory-aware methods are crucial for good performance. In addition, our new approaches permit the user to run problems that require larger capacities than the fastest memory of each compute node without depending on the software-managed cache mechanisms.
Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scientific computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix- matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and data structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.
Many applications, such as PDE based simulations and machine learning, apply BLAS/LAPACK routines to large groups of small matrices. While existing batched BLAS APIs provide meaningful speedup for this problem type, a non-canonical data layout enabling cross-matrix vectorization may provide further significant speedup. In this paper, we propose a new compact data layout that interleaves matrices in blocks according to the SIMD vector length. We combine this compact data layout with a new interface to BLAS/LAPACK routines that can be used within a hierarchical parallel application. Our layout provides up to 14x, 45x, and 27x speedup against OpenMP loops around optimized DGEMM, DTRSM and DGETRF kernels, respectively, on the Intel Knights Landing architecture. We discuss the compact batched BLAS/LAPACK implementations in two libraries, KokkosKernels and Intel® Math Kernel Library. We demonstrate the APIs in a line solver for coupled PDEs. Finally, we present detailed performance analysis of our kernels.
Triangle counting serves as a key building block for a set of important graph algorithms in network science. In this paper, we address the IEEE HPEC Static Graph Challenge problem of triangle counting, focusing on obtaining the best parallel performance on a single multicore node. Our implementation uses a linear algebra-based approach to triangle counting that has grown out of work related to our miniTri data analytics miniapplication [1] and our efforts to pose graph algorithms in the language of linear algebra. We leverage KokkosKernels to implement this approach efficiently on multicore architectures. Our performance results are competitive with the fastest known graph traversal-based approaches and are significantly faster than the Graph Challenge reference implementations, up to 670,000 times faster than the C++ reference and 10,000 times faster than the Python reference on a single Intel Haswell node.
We consider the problem of writing performance portablesparse matrix-sparse matrix multiplication (SPGEMM) kernelfor many-core architectures. We approach the SPGEMMkernel from the perspectives of algorithm design and implementation, and its practical usage. First, we design ahierarchical, memory-efficient SPGEMM algorithm. We thendesign and implement thread scalable data structures thatenable us to develop a portable SPGEMM implementation. We show that the method achieves performance portabilityon massively threaded architectures, namely Intel's KnightsLanding processors (KNLs) and NVIDIA's Graphic ProcessingUnits (GPUs), by comparing its performance to specializedimplementations. Second, we study an important aspectof SPGEMM's usage in practice by reusing the structure ofinput matrices, and show speedups up to 3× compared to thebest specialized implementation on KNLs. We demonstratethat the portable method outperforms 4 native methods on2 different GPU architectures (up to 17× speedup), and it ishighly thread scalable on KNLs, in which it obtains 101× speedup on 256 threads.
Select one or more publication years and click "Update search results".
This list has already been filtered by scope and author.
SELECTED PUBLICATION YEARS
MATCHING PUBLICATION YEARS
ALL PUBLICATION YEARS
No matches found.
Select a document type
Select one or more document types and click "Update search results".
This list has already been filtered by scope and author.
SELECTED DOCUMENT TYPES
MATCHING DOCUMENT TYPES
ALL DOCUMENT TYPES
No matches found.
Search for an author
Search for a Sandian author by first name, last name, or initials. Click on the author's name to add them as an option, and then click "Update search results".
This list has already been filtered by scope and author.
SELECTED AUTHORS
MATCHING AUTHORS
ALL AUTHORS
No matches found.
Search for a funding sponsor
Search for one or more funding sponsors and click "Update search results".
This list has already been filtered by scope and author.
SELECTED FUNDING SPONSORS
MATCHING FUNDING SPONSORS
ALL FUNDING SPONSORS
No matches found.
Search for a research partner
Search for one or more research partners and click "Update search results".
This list has already been filtered by scope and author.
SELECTED RESEARCH PARTNERS
MATCHING RESEARCH PARTNERS
ALL RESEARCH PARTNERS
No matches found.
Search for a subject
Search for one or more subjects and click "Update search results".
This list has already been filtered by scope and author.
SELECTED SUBJECTS
MATCHING SUBJECTS
ALL SUBJECTS
No matches found.
Search for a keyword
Search for one or more keywords and click "Update search results".
This list has already been filtered by scope and author.