Publications

Results 76–100 of 147
Skip to search filters

A high-order staggered meshless method for elliptic problems

SIAM Journal on Scientific Computing

Trask, Nathaniel; Perego, Mauro P.; Bochev, Pavel B.

We present a new meshless method for scalar diffusion equations, which is motivated by their compatible discretizations on primal-dual grids. Unlike the latter though, our approach is truly meshless because it only requires the graph of nearby neighbor connectivity of the discretization points xi. This graph defines a local primal-dual grid complex with a virtual dual grid, in the sense that specification of the dual metric attributes is implicit in the method's construction. Our method combines a topological gradient operator on the local primal grid with a generalized moving least squares approximation of the divergence on the local dual grid. We show that the resulting approximation of the div-grad operator maintains polynomial reproduction to arbitrary orders and yields a meshless method, which attains O(hm) convergence in both L2- and H1-norms, similar to mixed finite element methods. We demonstrate this convergence on curvilinear domains using manufactured solutions in two and three dimensions. Application of the new method to problems with discontinuous coefficients reveals solutions that are qualitatively similar to those of compatible mesh-based discretizations.

More Details

A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions

Computers and Mathematics with Applications (Oxford)

D'Elia, Marta D.; Perego, Mauro P.; Bochev, Pavel B.; Littlewood, David J.

We develop and analyze an optimization-based method for the coupling of nonlocal and local diffusion problems with mixed volume constraints and boundary conditions. The approach formulates the coupling as a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the nonlocal and local domains, and the controls are virtual volume constraints and boundary conditions. When some assumptions on the kernel functions hold, we prove that the resulting optimization problem is well-posed and discuss its implementation using Sandia’s agile software components toolkit. As a result, the latter provides the groundwork for the development of engineering analysis tools, while numerical results for nonlocal diffusion in three-dimensions illustrate key properties of the optimization-based coupling method.

More Details
Results 76–100 of 147
Results 76–100 of 147