Publications

Results 26–50 of 69
Skip to search filters

Surrogate-based ensemble grouping strategies for embedded sampling-based uncertainty quantification

Lecture Notes in Computational Science and Engineering

D'Elia, Marta D.; Phipps, Eric T.; Rushdi, A.; Ebeida, Mohamed S.

The embedded ensemble propagation approach introduced in Phipps et al. (SIAM J. Sci. Comput. 39(2):C162, 2017) has been demonstrated to be a powerful means of reducing the computational cost of sampling-based uncertainty quantification methods, particularly on emerging computational architectures. A substantial challenge with this method however is ensemble-divergence, whereby different samples within an ensemble choose different code paths. This can reduce the effectiveness of the method and increase computational cost. Therefore grouping samples together to minimize this divergence is paramount in making the method effective for challenging computational simulations. In this work, a new grouping approach based on a surrogate for computational cost built up during the uncertainty propagation is developed and applied to model advection-diffusion problems where computational cost is driven by the number of (preconditioned) linear solver iterations. The approach is developed within the context of locally adaptive stochastic collocation methods, where a surrogate for the number of linear solver iterations, generated from previous levels of the adaptive grid generation, is used to predict iterations for subsequent samples, and group them based on similar numbers of iterations. The effectiveness of the method is demonstrated by applying it to highly anisotropic advection-dominated diffusion problems with a wide variation in solver iterations from sample to sample. It extends the parameter-based grouping approach developed in D’Elia et al. (SIAM/ASA J. Uncertain. Quantif. 6:87, 2017) to more general problems without requiring detailed knowledge of how the uncertain parameters affect the simulation’s cost, and is also less intrusive to the simulation code.

More Details

Optimization-based coupling of local and nonlocal models: Applications to Peridynamics

Handbook of Nonlocal Continuum Mechanics for Materials and Structures

D'Elia, Marta D.; Bochev, Pavel B.; Littlewood, David J.; Perego, Mauro P.

Nonlocal continuum theories for mechanics can capture strong nonlocal effects due to long-range forces in their governing equations. When these effects cannot be neglected, nonlocal models are more accurate than partial differential equations (PDEs); however, the accuracy comes at the price of a prohibitive computational cost, making local-to-nonlocal (LtN) coupling strategies mandatory. In this chapter, we review the state of the art of LtN methods where the efficiency of PDEs is combined with the accuracy of nonlocal models. Then, we focus on optimization-based coupling strategies that couch the coupling of the models into a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the local and nonlocal problem domains, and the virtual controls are the nonlocal volume constraint and the local boundary condition. The strategy is described in the context of nonlocal and local elasticity and illustrated by numerical tests on three-dimensional realistic geometries. Additional numerical tests also prove the consistency of the method via patch tests.

More Details

Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods Applied to Anisotropic Diffusion Problems

SIAM/ASA Journal on Uncertainty Quantification

D'Elia, Marta D.; Phipps, Eric T.; Edwards, Harold C.; Hu, Jonathan J.; Rajamanickam, Sivasankaran R.

Previous work has demonstrated that propagating groups of samples, called ensembles, together through forward simulations can dramatically reduce the aggregate cost of sampling-based uncertainty propagation methods [E. Phipps, M. D'Elia, H. C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanickam, SIAM J. Sci. Comput., 39 (2017), pp. C162--C193]. However, critical to the success of this approach when applied to challenging problems of scientific interest is the grouping of samples into ensembles to minimize the total computational work. For example, the total number of linear solver iterations for ensemble systems may be strongly influenced by which samples form the ensemble when applying iterative linear solvers to parameterized and stochastic linear systems. In this paper we explore sample grouping strategies for local adaptive stochastic collocation methods applied to PDEs with uncertain input data, in particular canonical anisotropic diffusion problems where the diffusion coefficient is modeled by truncated Karhunen--Loève expansions. Finally, we demonstrate that a measure of the total anisotropy of the diffusion coefficient is a good surrogate for the number of linear solver iterations for each sample and therefore provides a simple and effective metric for grouping samples.

More Details

Ensemble grouping strategies for embedded stochastic collocation methods applied to anisotropic diffusion problems

SIAM-ASA Journal on Uncertainty Quantification

D'Elia, Marta D.; Edwards, Harold C.; Hu, J.; Phipps, Eric T.; Rajamanickam, Sivasankaran R.

Previous work has demonstrated that propagating groups of samples, called ensembles, together through forward simulations can dramatically reduce the aggregate cost of sampling-based uncertainty propagation methods [E. Phipps, M. D'Elia, H. C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanickam, SIAM J. Sci. Comput., 39 (2017), pp. C162-C193]. However, critical to the success of this approach when applied to challenging problems of scientific interest is the grouping of samples into ensembles to minimize the total computational work. For example, the total number of linear solver iterations for ensemble systems may be strongly influenced by which samples form the ensemble when applying iterative linear solvers to parameterized and stochastic linear systems. In this work we explore sample grouping strategies for local adaptive stochastic collocation methods applied to PDEs with uncertain input data, in particular canonical anisotropic diffusion problems where the diffusion coefficient is modeled by truncated Karhunen-Loève expansions. We demonstrate that a measure of the total anisotropy of the diffusion coefficient is a good surrogate for the number of linear solver iterations for each sample and therefore provides a simple and effective metric for grouping samples.

More Details

Nonlocal Convection-Diffusion Problems on Bounded Domains and Finite-Range Jump Processes

Computational Methods in Applied Mathematics

D'Elia, Marta D.; Du, Qiang; Gunzburger, Max; Lehoucq, Richard B.

A nonlocal convection-diffusion model is introduced for the master equation of Markov jump processes in bounded domains. With minimal assumptions on the model parameters, the nonlocal steady and unsteady state master equations are shown to be well-posed in a weak sense. Then the nonlocal operator is shown to be the generator of finite-range nonsymmetric jump processes and, when certain conditions on the model parameters hold, the generators of finite and infinite activity Lévy and Lévy-type jump processes are shown to be special instances of the nonlocal operator.

More Details

Embedded ensemble propagation for improving performance, portability, and scalability of uncertainty quantification on emerging computational architectures

SIAM Journal on Scientific Computing

Phipps, Eric T.; D'Elia, Marta D.; Edwards, Harold C.; Hoemmen, M.; Hu, J.; Rajamanickam, Sivasankaran R.

Quantifying simulation uncertainties is a critical component of rigorous predictive simulation. A key component of this is forward propagation of uncertainties in simulation input data to output quantities of interest. Typical approaches involve repeated sampling of the simulation over the uncertain input data and can require numerous samples when accurately propagating uncertainties from large numbers of sources. Often simulation processes from sample to sample are similar, and much of the data generated from each sample evaluation could be reused. We explore a new method for implementing sampling methods that simultaneously propagates groups of samples together in an embedded fashion, which we call embedded ensemble propagation. We show how this approach takes advantage of properties of modern computer architectures to improve performance by enabling reuse between samples, reducing memory bandwidth requirements, improving memory access patterns, improving opportunities for fine-grained parallelization, and reducing communication costs. We describe a software technique for implementing embedded ensemble propagation based on the use of C++ templates and describe its integration with various scientific computing libraries within Trilinos. We demonstrate improved performance, portability, and scalability for the approach applied to the simulation of partial differential equations on a variety of multicore and manycore architectures, including up to 16,384 cores on a Cray XK7 (Titan).

More Details

A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions

Computers and Mathematics with Applications (Oxford)

D'Elia, Marta D.; Perego, Mauro P.; Bochev, Pavel B.; Littlewood, David J.

We develop and analyze an optimization-based method for the coupling of nonlocal and local diffusion problems with mixed volume constraints and boundary conditions. The approach formulates the coupling as a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the nonlocal and local domains, and the controls are virtual volume constraints and boundary conditions. When some assumptions on the kernel functions hold, we prove that the resulting optimization problem is well-posed and discuss its implementation using Sandia’s agile software components toolkit. As a result, the latter provides the groundwork for the development of engineering analysis tools, while numerical results for nonlocal diffusion in three-dimensions illustrate key properties of the optimization-based coupling method.

More Details

A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions

Computers and Mathematics with Applications

D'Elia, Marta D.; Perego, Mauro P.; Bochev, Pavel B.; Littlewood, David J.

We develop and analyze an optimization-based method for the coupling of nonlocal and local diffusion problems with mixed volume constraints and boundary conditions. The approach formulates the coupling as a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the nonlocal and local domains, and the controls are virtual volume constraints and boundary conditions. When some assumptions on the kernel functions hold, we prove that the resulting optimization problem is well-posed and discuss its implementation using Sandia's agile software components toolkit. The latter provides the groundwork for the development of engineering analysis tools, while numerical results for nonlocal diffusion in three-dimensions illustrate key properties of the optimization-based coupling method.

More Details
Results 26–50 of 69
Results 26–50 of 69

Current Filters

Clear all