Publications

Results 76–100 of 218
Skip to search filters

Enabling Diverse Software Stacks on Supercomputers Using High Performance Virtual Clusters

Proceedings - IEEE International Conference on Cluster Computing, ICCC

Younge, Andrew J.; Pedretti, Kevin P.; Grant, Ryan E.; Gaines, Brian G.; Brightwell, Ronald B.

While large-scale simulations have been the hallmark of the High Performance Computing (HPC) community for decades, Large Scale Data Analytics (LSDA) workloads are gaining attention within the scientific community not only as a processing component to large HPC simulations, but also as standalone scientific tools for knowledge discovery. With the path towards Exascale, new HPC runtime systems are also emerging in a way that differs from classical distributed computing models. However, system software for such capabilities on the latest extreme-scale DOE supercomputing needs to be enhanced to more appropriately support these types of emerging software ecosystems.In this paper, we propose the use of Virtual Clusters on advanced supercomputing resources to enable systems to support not only HPC workloads, but also emerging big data stacks. Specifically, we have deployed the KVM hypervisor within Cray's Compute Node Linux on a XC-series supercomputer testbed. We also use libvirt and QEMU to manage and provision VMs directly on compute nodes, leveraging Ethernet-over-Aries network emulation. To our knowledge, this is the first known use of KVM on a true MPP supercomputer. We investigate the overhead our solution using HPC benchmarks, both evaluating single-node performance as well as weak scaling of a 32-node virtual cluster. Overall, we find single node performance of our solution using KVM on a Cray is very efficient with near-native performance. However overhead increases by up to 20% as virtual cluster size increases, due to limitations of the Ethernet-over-Aries bridged network. Furthermore, we deploy Apache Spark with large data analysis workloads in a Virtual Cluster, effectively demonstrating how diverse software ecosystems can be supported by High Performance Virtual Clusters.

More Details

FY17 CSSE L2 Milestone Report: Analyzing Power Usage Characteristics of Workloads Running on Trinity

Pedretti, Kevin P.

This report summarizes the work performed as part of a FY17 CSSE L2 milestone to in- vestigate the power usage behavior of ASC workloads running on the ATS-1 Trinity plat- form. Techniques were developed to instrument application code regions of interest using the Power API together with the Kokkos profiling interface and Caliper annotation library. Experiments were performed to understand the power usage behavior of mini-applications and the SNL/ATDM SPARC application running on ATS-1 Trinity Haswell and Knights Landing compute nodes. A taxonomy of power measurement approaches was identified and presented, providing a guide for application developers to follow. Controlled scaling study experiments were performed on up to 2048 nodes of Trinity along with smaller scale ex- periments on Trinity testbed systems. Additionally, power and energy system monitoring information from Trinity was collected and archived for post analysis of "in-the-wild" work- loads. Results were analyzed to assess the sensitivity of the workloads to ATS-1 compute node type (Haswell vs. Knights Landing), CPU frequency control, node-level power capping control, OpenMP configuration, Knights Landing on-package memory configuration, and algorithm/solver configuration. Overall, this milestone lays groundwork for addressing the long-term goal of determining how to best use and operate future ASC platforms to achieve the greatest benefit subject to a constrained power budget.

More Details

The Portals 4.1 Network Programming Interface

Barrett, Brian W.; Brightwell, Ronald B.; Grant, Ryan E.; Hemmert, Karl S.; Pedretti, Kevin P.; Wheeler, Kyle W.; Underwood, Keith; Riesen, Rolf R.; Maccabe, Arthur B.; Hudson, Trammel H.

This report presents a specification for the Portals 4 networ k programming interface. Portals 4 is intended to allow scalable, high-performance network communication betwee n nodes of a parallel computing system. Portals 4 is well suited to massively parallel processing and embedded syste ms. Portals 4 represents an adaption of the data movement layer developed for massively parallel processing platfor ms, such as the 4500-node Intel TeraFLOPS machine. Sandia's Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4 is tar geted to the next generation of machines employing advanced network interface architectures that support enh anced offload capabilities.

More Details

High Performance Computing - Power Application Programming Interface Specification Version 2.0

Laros, James H.; Grant, Ryan E.; Levenhagen, Michael J.; Olivier, Stephen L.; Pedretti, Kevin P.; Ward, Harry L.; Younge, Andrew J.

Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

More Details

Standardizing Power Monitoring and Control at Exascale

Computer

Grant, Ryan E.; Levenhagen, Michael J.; Olivier, Stephen L.; DeBonis, David D.; Pedretti, Kevin P.; Laros, James H.

Power API - the result of collaboration among national laboratories, universities, and major vendors - provides a range of standardized power management functions, from application-level control and measurement to facility-level accounting, including real-time and historical statistics gathering. Support is already available for Intel and AMD CPUs and standalone measurement devices.

More Details

High Performance Computing - Power Application Programming Interface Specification Version 1.4

Laros, James H.; DeBonis, David D.; Grant, Ryan E.; Kelly, Suzanne M.; Levenhagen, Michael J.; Olivier, Stephen L.; Pedretti, Kevin P.

Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

More Details

A cross-enclave composition mechanism for exascale system software

Proceedings of the 6th International Workshop on Runtime and Operating Systems for Supercomputers, ROSS 2016 - In conjunction with HPDC 2016

Evans, Noah; Pedretti, Kevin P.; Kocoloski, Brian; Lange, John; Lang, Michael; Bridges, Patrick G.

As supercomputers move to exascale, the number of cores per node continues to increase, but the I/O bandwidth between nodes is increasing more slowly. This leads to computational power outstripping I/O bandwidth. This growth, in turn, encourages moving as much of an HPC workflow as possible onto the node in order to minimize data movement. One particular method of application composition, enclaves, co-locates different operating systems and runtimes on the same node where they communicate by in situ communication mechanisms. In this work, we describe a mechanism for communicating between composed applications. We implement a mechanism using Copy onWrite cooperating with XEMEM shared memory to provide consistent, implicitly unsynchronized communication across enclaves. We then evaluate this mechanism using a composed application and analytics between the Kitten Lightweight Kernel and Linux on top of the Hobbes Operating System and Runtime. These results show a 3% overhead compared to an application running in isolation, demonstrating the viability of this approach.

More Details

High Performance Computing - Power Application Programming Interface Specification

Laros, James H.; Kelly, Suzanne M.; Pedretti, Kevin P.; Grant, Ryan E.; Olivier, Stephen L.; Levenhagen, Michael J.; DeBonis, David D.; Laros, James H.

Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

More Details
Results 76–100 of 218
Results 76–100 of 218