Publications

Results 151–175 of 268
Skip to search filters

A block preconditioner for an exact penalty formulation for stationary MHD

SIAM Journal on Scientific Computing

Phillips, Edward G.; Elman, Howard C.; Cyr, Eric C.; Shadid, John N.; Pawlowski, Roger P.

The magnetohydrodynamics (MHD) equations are used to model the flow of electrically conducting fluids in such applications as liquid metals and plasmas. This system of nonself-adjoint, nonlinear PDEs couples the Navier-Stokes equations for fluids and Maxwell's equations for electromagnetics. There has been recent interest in fully coupled solvers for the MHD system because they allow for fast steady-state solutions that do not require pseudo-time-stepping. When the fully coupled system is discretized, the strong coupling can make the resulting algebraic systems difficult to solve, requiring effective preconditioning of iterative methods for efficiency. In this work, we consider a finite element discretization of an exact penalty formulation for the stationary MHD equations posed in two-dimensional domains. This formulation has the benefit of implicitly enforcing the divergence-free condition on the magnetic field without requiring a Lagrange multiplier. We consider extending block preconditioning techniques developed for the Navier-Stokes equations to the full MHD system. We analyze operators arising in block decompositions from a continuous perspective and apply arguments based on the existence of approximate commutators to develop new preconditioners that account for the physical coupling. This results in a family of parameterized block preconditioners for both Picard and Newton linearizations. We develop an automated method for choosing the relevant parameters and demonstrate the robustness of these preconditioners for a range of the physical nondimensional parameters and with respect to mesh refinement.

More Details

Thermal hydraulic simulations, error estimation and parameter sensitivity studies in Drekar::CFD

Shadid, John N.; Pawlowski, Roger P.; Cyr, Eric C.; Wildey, Timothy M.

This report describes work directed towards completion of the Thermal Hydraulics Methods (THM) CFD Level 3 Milestone THM.CFD.P7.05 for the Consortium for Advanced Simulation of Light Water Reactors (CASL) Nuclear Hub effort. The focus of this milestone was to demonstrate the thermal hydraulics and adjoint based error estimation and parameter sensitivity capabilities in the CFD code called Drekar::CFD. This milestone builds upon the capabilities demonstrated in three earlier milestones; THM.CFD.P4.02 [12], completed March, 31, 2012, THM.CFD.P5.01 [15] completed June 30, 2012 and THM.CFD.P5.01 [11] completed on October 31, 2012.

More Details

A comparison of adjoint and data-centric verification techniques

Cyr, Eric C.; Shadid, John N.; Pawlowski, Roger P.

This document summarizes the results from a level 3 milestone study within the CASL VUQ effort. We compare the adjoint-based a posteriori error estimation approach with a recent variant of a data-centric verification technique. We provide a brief overview of each technique and then we discuss their relative advantages and disadvantages. We use Drekar::CFD to produce numerical results for steady-state Navier Stokes and SARANS approximations. 3

More Details
Results 151–175 of 268
Results 151–175 of 268