Publications

Results 126–150 of 268
Skip to search filters

A new class of finite element variational multiscale turbulence models for incompressible magnetohydrodynamics

Journal of Computational Physics

Sondak, D.; Shadid, John N.; Oberai, A.A.; Pawlowski, Roger P.; Cyr, E.C.; Smith, Thomas M.

New large eddy simulation (LES) turbulence models for incompressible magnetohydrodynamics (MHD) derived from the variational multiscale (VMS) formulation for finite element simulations are introduced. The new models include the variational multiscale formulation, a residual-based eddy viscosity model, and a mixed model that combines both of these component models. Each model contains terms that are proportional to the residual of the incompressible MHD equations and is therefore numerically consistent. Moreover, each model is also dynamic, in that its effect vanishes when this residual is small. The new models are tested on the decaying MHD Taylor Green vortex at low and high Reynolds numbers. The evaluation of the models is based on comparisons with available data from direct numerical simulations (DNS) of the time evolution of energies as well as energy spectra at various discrete times. A numerical study, on a sequence of meshes, is presented that demonstrates that the large eddy simulation approaches the DNS solution for these quantities with spatial mesh refinement.

More Details

Towards efficient backward-in-time adjoint computations using data compression techniques

Computer Methods in Applied Mechanics and Engineering

Cyr, E.C.; Shadid, John N.; Wildey, T.

In the context of a posteriori error estimation for nonlinear time-dependent partial differential equations, the state-of-the-practice is to use adjoint approaches which require the solution of a backward-in-time problem defined by a linearization of the forward problem. One of the major obstacles in the practical application of these approaches is the need to store, or recompute, the forward solution to define the adjoint problem and to evaluate the error representation. This study considers the use of data compression techniques to approximate forward solutions employed in the backward-in-time integration. The development derives an error representation that accounts for the difference between the standard-approach and the compressed approximation of the forward solution. This representation is algorithmically similar to the standard representation and only requires the computation of the quantity of interest for the forward solution and the data-compressed reconstructed solution (i.e.scalar quantities that can be evaluated as the forward problem is integrated). This approach is then compared with existing techniques, such as checkpointing and time-averaged adjoints. Finally, we provide numerical results indicating the potential efficiency of our approach on a transient diffusion-reaction equation and on the Navier-Stokes equations. These results demonstrate memory compression ratios up to 450× while maintaining reasonable accuracy in the error-estimates.

More Details
Results 126–150 of 268
Results 126–150 of 268

Current Filters

Clear all