Publications

Results 76–100 of 124
Skip to search filters

Formulating and analyzing multi-stage sensor placement problems

Water Distribution Systems Analysis 2010 - Proceedings of the 12th International Conference, WDSA 2010

Watson, Jean-Paul W.; Hart, William E.; Woodruff, David L.; Murray, Regan

The optimization of sensor placements is a key aspect of the design of contaminant warning systems for automatically detecting contaminants in water distribution systems. Although researchers have generally assumed that all sensors are placed at the same time, in practice sensor networks will likely grow and evolve over time. For example, limitations for a water utility's budget may dictate an staged, incremental deployment of sensors over many years. We describe optimization formulations of multi-stage sensor placement problems. The objective of these formulations includes an explicit trade-off between the value of the initially deployed and final sensor networks. This trade-off motivates the deployment of sensors in initial stages of the deployment schedule, even though these choices typically lead to a solution that is suboptimal when compared to placing all sensors at once. These multi-stage sensor placement problems can be represented as mixed-integer programs, and we illustrate the impact of this trade-off using standard commercial solvers. We also describe a multi-stage formulation that models budget uncertainty, expressed as a tree of potential budget scenarios through time. Budget uncertainty is used to assess and hedge against risks due to a potentially incomplete deployment of a planned sensor network. This formulation is a multi-stage stochastic mixed-integer program, which are notoriously difficult to solve. We apply standard commercial solvers to small-scale test problems, enabling us to effectively analyze multi-stage sensor placement problems subject to budget uncertainties, and assess the impact of accounting for such uncertainty relative to a deterministic multi-stage model. © 2012 ASCE.

More Details

Optimization of large-scale heterogeneous system-of-systems models

Gray, Genetha A.; Hart, William E.; Hough, Patricia D.; Parekh, Ojas D.; Phillips, Cynthia A.; Siirola, John D.; Swiler, Laura P.; Watson, Jean-Paul W.

Decision makers increasingly rely on large-scale computational models to simulate and analyze complex man-made systems. For example, computational models of national infrastructures are being used to inform government policy, assess economic and national security risks, evaluate infrastructure interdependencies, and plan for the growth and evolution of infrastructure capabilities. A major challenge for decision makers is the analysis of national-scale models that are composed of interacting systems: effective integration of system models is difficult, there are many parameters to analyze in these systems, and fundamental modeling uncertainties complicate analysis. This project is developing optimization methods to effectively represent and analyze large-scale heterogeneous system of systems (HSoS) models, which have emerged as a promising approach for describing such complex man-made systems. These optimization methods enable decision makers to predict future system behavior, manage system risk, assess tradeoffs between system criteria, and identify critical modeling uncertainties.

More Details

Sensor placement for municipal water networks

Phillips, Cynthia A.; Boman, Erik G.; Carr, Robert D.; Hart, William E.; Berry, Jonathan W.; Watson, Jean-Paul W.; Hart, David B.; Mckenna, Sean A.; Riesen, Lee A.

We consider the problem of placing a limited number of sensors in a municipal water distribution network to minimize the impact over a given suite of contamination incidents. In its simplest form, the sensor placement problem is a p-median problem that has structure extremely amenable to exact and heuristic solution methods. We describe the solution of real-world instances using integer programming or local search or a Lagrangian method. The Lagrangian method is necessary for solution of large problems on small PCs. We summarize a number of other heuristic methods for effectively addressing issues such as sensor failures, tuning sensors based on local water quality variability, and problem size/approximation quality tradeoffs. These algorithms are incorporated into the TEVA-SPOT toolkit, a software suite that the US Environmental Protection Agency has used and is using to design contamination warning systems for US municipal water systems.

More Details

Pyomo : Python Optimization Modeling Objects

Siirola, John D.; Watson, Jean-Paul W.; Hart, William E.

The Python Optimization Modeling Objects (Pyomo) package [1] is an open source tool for modeling optimization applications within Python. Pyomo provides an objected-oriented approach to optimization modeling, and it can be used to define symbolic problems, create concrete problem instances, and solve these instances with standard solvers. While Pyomo provides a capability that is commonly associated with algebraic modeling languages such as AMPL, AIMMS, and GAMS, Pyomo's modeling objects are embedded within a full-featured high-level programming language with a rich set of supporting libraries. Pyomo leverages the capabilities of the Coopr software library [2], which integrates Python packages (including Pyomo) for defining optimizers, modeling optimization applications, and managing computational experiments. A central design principle within Pyomo is extensibility. Pyomo is built upon a flexible component architecture [3] that allows users and developers to readily extend the core Pyomo functionality. Through these interface points, extensions and applications can have direct access to an optimization model's expression objects. This facilitates the rapid development and implementation of new modeling constructs and as well as high-level solution strategies (e.g. using decomposition- and reformulation-based techniques). In this presentation, we will give an overview of the Pyomo modeling environment and model syntax, and present several extensions to the core Pyomo environment, including support for Generalized Disjunctive Programming (Coopr GDP), Stochastic Programming (PySP), a generic Progressive Hedging solver [4], and a tailored implementation of Bender's Decomposition.

More Details

The TEVA-SPOT toolkit for drinking water contaminant warning system design

World Environmental and Water Resources Congress 2008: Ahupua'a - Proceedings of the World Environmental and Water Resources Congress 2008

Hart, William E.; Berry, Jonathan W.; Boman, Erik G.; Murray, Regan; Phillips, Cynthia A.; Riesen, Lee A.; Watson, Jean-Paul W.

We present the TEVA-SPOT Toolkit, a sensor placement optimization tool developed within the USEPA TEVA program. The TEVA-SPOT Toolkit provides a sensor placement framework that facilitates research in sensor placement optimization and enables the practical application of sensor placement solvers to real-world CWS design applications. This paper provides an overview of its key features, and then illustrates how this tool can be flexibly applied to solve a variety of different types of sensor placement problems. © 2008 ASCE.

More Details

Limited-memory techniques for sensor placement in water distribution networks

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Hart, William E.; Berry, Jonathan W.; Boman, Erik G.; Phillips, Cynthia A.; Riesen, Lee A.; Watson, Jean-Paul W.

The practical utility of optimization technologies is often impacted by factors that reflect how these tools are used in practice, including whether various real-world constraints can be adequately modeled, the sophistication of the analysts applying the optimizer, and related environmental factors (e.g. whether a company is willing to trust predictions from computational models). Other features are less appreciated, but of equal importance in terms of dictating the successful use of optimization. These include the scale of problem instances, which in practice drives the development of approximate solution techniques, and constraints imposed by the target computing platforms. End-users often lack state-of-the-art computers, and thus runtime and memory limitations are often a significant, limiting factor in algorithm design. When coupled with large problem scale, the result is a significant technological challenge. We describe our experience developing and deploying both exact and heuristic algorithms for placing sensors in water distribution networks to mitigate against damage due intentional or accidental introduction of contaminants. The target computing platforms for this application have motivated limited-memory techniques that can optimize large-scale sensor placement problems. © 2008 Springer Berlin Heidelberg.

More Details
Results 76–100 of 124
Results 76–100 of 124