Publications

Results 101–125 of 210
Skip to search filters

LDRD Report: Scheduling Irregular Algorithms

Boman, Erik G.

This LDRD project was a campus exec fellowship to fund (in part) Donald Nguyen’s PhD research at UT-Austin. His work has focused on parallel programming models, and scheduling irregular algorithms on shared-memory systems using the Galois framework. Galois provides a simple but powerful way for users and applications to automatically obtain good parallel performance using certain supported data containers. The naïve user can write serial code, while advanced users can optimize performance by advanced features, such as specifying the scheduling policy. Galois was used to parallelize two sparse matrix reordering schemes: RCM and Sloan. Such reordering is important in high-performance computing to obtain better data locality and thus reduce run times.

More Details

Domain Decomposition Preconditioners for Communication-Avoiding Krylov Methods on a Hybrid CPU/GPU Cluster

International Conference for High Performance Computing, Networking, Storage and Analysis, SC

Yamazaki, Ichitaro; Rajamanickam, Sivasankaran R.; Boman, Erik G.; Hoemmen, Mark F.; Heroux, Michael A.; Tomov, Stanimire

Krylov subspace projection methods are widely used iterative methods for solving large-scale linear systems of equations. Researchers have demonstrated that communication avoiding (CA) techniques can improve Krylov methods' performance on modern computers, where communication is becoming increasingly expensive compared to arithmetic operations. In this paper, we extend these studies by two major contributions. First, we present our implementation of a CA variant of the Generalized Minimum Residual (GMRES) method, called CAGMRES, for solving no symmetric linear systems of equations on a hybrid CPU/GPU cluster. Our performance results on up to 120 GPUs show that CA-GMRES gives a speedup of up to 2.5x in total solution time over standard GMRES on a hybrid cluster with twelve Intel Xeon CPUs and three Nvidia Fermi GPUs on each node. We then outline a domain decomposition framework to introduce a family of preconditioners that are suitable for CA Krylov methods. Our preconditioners do not incur any additional communication and allow the easy reuse of existing algorithms and software for the sub domain solves. Experimental results on the hybrid CPU/GPU cluster demonstrate that CA-GMRES with preconditioning achieve a speedup of up to 7.4x over CAGMRES without preconditioning, and speedup of up to 1.7x over GMRES with preconditioning in total solution time. These results confirm the potential of our framework to develop a practical and effective preconditioned CA Krylov method.

More Details
Results 101–125 of 210
Results 101–125 of 210