Publications

Results 26–50 of 144
Skip to search filters

ASC ATDM Level 2 Milestone #6358: Assess Status of Next Generation Components and Physics Models in EMPIRE

Bettencourt, Matthew T.; Kramer, Richard M.; Cartwright, Keith C.; Phillips, Edward G.; Ober, Curtis C.; Pawlowski, Roger P.; Swan, Matthew S.; Kalashnikova, Irina; Phipps, Eric T.; Conde, Sidafa C.; Cyr, Eric C.; Ulmer, Craig D.; Kordenbrock, Todd H.; Levy, Scott L.; Templet, Gary J.; Hu, Jonathan J.; Lin, Paul L.; Glusa, Christian A.; Siefert, Christopher S.; Glass, Micheal W.

This report documents the outcome from the ASC ATDM Level 2 Milestone 6358: Assess Status of Next Generation Components and Physics Models in EMPIRE. This Milestone is an assessment of the EMPIRE (ElectroMagnetic Plasma In Realistic Environments) application and three software components. The assessment focuses on the electromagnetic and electrostatic particle-in-cell solu- tions for EMPIRE and its associated solver, time integration, and checkpoint-restart components. This information provides a clear understanding of the current status of the EMPIRE application and will help to guide future work in FY19 in order to ready the application for the ASC ATDM L 1 Milestone in FY20. It is clear from this assessment that performance of the linear solver will have to be a focus in FY19.

More Details

Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods Applied to Anisotropic Diffusion Problems

SIAM/ASA Journal on Uncertainty Quantification

D'Elia, Marta D.; Phipps, Eric T.; Edwards, Harold C.; Hu, Jonathan J.; Rajamanickam, Sivasankaran R.

Previous work has demonstrated that propagating groups of samples, called ensembles, together through forward simulations can dramatically reduce the aggregate cost of sampling-based uncertainty propagation methods [E. Phipps, M. D'Elia, H. C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanickam, SIAM J. Sci. Comput., 39 (2017), pp. C162--C193]. However, critical to the success of this approach when applied to challenging problems of scientific interest is the grouping of samples into ensembles to minimize the total computational work. For example, the total number of linear solver iterations for ensemble systems may be strongly influenced by which samples form the ensemble when applying iterative linear solvers to parameterized and stochastic linear systems. In this paper we explore sample grouping strategies for local adaptive stochastic collocation methods applied to PDEs with uncertain input data, in particular canonical anisotropic diffusion problems where the diffusion coefficient is modeled by truncated Karhunen--Loève expansions. Finally, we demonstrate that a measure of the total anisotropy of the diffusion coefficient is a good surrogate for the number of linear solver iterations for each sample and therefore provides a simple and effective metric for grouping samples.

More Details

Ensemble grouping strategies for embedded stochastic collocation methods applied to anisotropic diffusion problems

SIAM-ASA Journal on Uncertainty Quantification

D'Elia, Marta D.; Edwards, Harold C.; Hu, J.; Phipps, Eric T.; Rajamanickam, Sivasankaran R.

Previous work has demonstrated that propagating groups of samples, called ensembles, together through forward simulations can dramatically reduce the aggregate cost of sampling-based uncertainty propagation methods [E. Phipps, M. D'Elia, H. C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanickam, SIAM J. Sci. Comput., 39 (2017), pp. C162-C193]. However, critical to the success of this approach when applied to challenging problems of scientific interest is the grouping of samples into ensembles to minimize the total computational work. For example, the total number of linear solver iterations for ensemble systems may be strongly influenced by which samples form the ensemble when applying iterative linear solvers to parameterized and stochastic linear systems. In this work we explore sample grouping strategies for local adaptive stochastic collocation methods applied to PDEs with uncertain input data, in particular canonical anisotropic diffusion problems where the diffusion coefficient is modeled by truncated Karhunen-Loève expansions. We demonstrate that a measure of the total anisotropy of the diffusion coefficient is a good surrogate for the number of linear solver iterations for each sample and therefore provides a simple and effective metric for grouping samples.

More Details

Embedded uncertainty quantification methods via stokhos

Handbook of Uncertainty Quantification

Phipps, Eric T.; Salinger, Andrew G.

Stokhos (Phipps, Stokhos embedded uncertainty quantification methods. http://trilinos.org/packages/stokhos/, 2015) is a package within Trilinos (Heroux et al., ACM Trans Math Softw 31(3), 2005; Michael et al., Sci Program 20(2):83-88, 2012) that enables embedded or intrusive uncertainty quantification capabilities to C++ codes. It provides tools for implementing stochastic Galerkin methods and embedded sample propagation through the use of template-based generic programming (Pawlowski et al., Sci Program 20:197-219, 2012; Roger et al., Sci Program 20:327-345, 2012) which allows deterministic simulation codes to be easily modified for embedded uncertainty quantification. It provides tools for forming and solving the resulting linear and nonlinear equations these methods generate, leveraging the large-scale linear and nonlinear solver capabilities provided by Trilinos. Furthermore, Stokhos is integrated with the emerging many-core architecture capabilities provided by the Kokkos (Edwards et al., Sci Program 20(2):89-114, 2012; Edwards et al., J Parallel Distrib Comput 74(12):3202-3216, 2014) and Tpetra packages (Baker and Heroux, Sci Program 20(2):115-128, 2012; Hoemmen et al., Tpetra: next-generation distributed linear algebra. http://trilinos.org/packages/tpetra, 2015) within Trilinos, allowing these embedded uncertainty quantification capabilities to be applied in both shared and distributed memory parallel computational environments. Finally, the Stokhos tools have been incorporated into the Albany simulation code (Pawlowski et al., Sci Program 20:327-345, 2012; Salinger et al., Albany multiphysics simulation code. https://github.com/gahansen/Albany, 2015) enabling embedded uncertainty quantification of a wide variety of large-scale PDE-based simulations.

More Details

Embedded ensemble propagation for improving performance, portability, and scalability of uncertainty quantification on emerging computational architectures

SIAM Journal on Scientific Computing

Phipps, Eric T.; D'Elia, Marta D.; Edwards, Harold C.; Hoemmen, M.; Hu, J.; Rajamanickam, Sivasankaran R.

Quantifying simulation uncertainties is a critical component of rigorous predictive simulation. A key component of this is forward propagation of uncertainties in simulation input data to output quantities of interest. Typical approaches involve repeated sampling of the simulation over the uncertain input data and can require numerous samples when accurately propagating uncertainties from large numbers of sources. Often simulation processes from sample to sample are similar, and much of the data generated from each sample evaluation could be reused. We explore a new method for implementing sampling methods that simultaneously propagates groups of samples together in an embedded fashion, which we call embedded ensemble propagation. We show how this approach takes advantage of properties of modern computer architectures to improve performance by enabling reuse between samples, reducing memory bandwidth requirements, improving memory access patterns, improving opportunities for fine-grained parallelization, and reducing communication costs. We describe a software technique for implementing embedded ensemble propagation based on the use of C++ templates and describe its integration with various scientific computing libraries within Trilinos. We demonstrate improved performance, portability, and scalability for the approach applied to the simulation of partial differential equations on a variety of multicore and manycore architectures, including up to 16,384 cores on a Cray XK7 (Titan).

More Details
Results 26–50 of 144
Results 26–50 of 144

Current Filters

Clear all