Publications

Results 126–150 of 158
Skip to search filters

Low-memory Lagrangian relaxation methods for sensor placement in municipal water networks

World Environmental and Water Resources Congress 2008: Ahupua'a - Proceedings of the World Environmental and Water Resources Congress 2008

Berry, Jonathan W.; Boman, Erik G.; Phillips, Cynthia A.; Riesen, Lee A.

Placing sensors in municipal water networks to protect against a set of contamination events is a classic p-median problem for most objectives when we assume that sensors are perfect. Many researchers have proposed exact and approximate solution methods for this p-median formulation. For full-scale networks with large contamination event suites, one must generally rely on heuristic methods to generate solutions. These heuristics provide feasible solutions, but give no quality guarantee relative to the optimal placement. In this paper we apply a Lagrangian relaxation method in order to compute lower bounds on the expected impact of suites of contamination events. In all of our experiments with single objectives, these lower bounds establish that the GRASP local search method generates solutions that are provably optimal to to within a fraction of a percentage point. Our Lagrangian heuristic also provides good solutions itself and requires only a fraction of the memory of GRASP. We conclude by describing two variations of the Lagrangian heuristic: an aggregated version that trades off solution quality for further memory savings, and a multi-objective version which balances objectives with additional goals. © 2008 ASCE.

More Details

Tolerating the community detection resolution limit with edge weighting

Proposed for publication in the Proceedings of the National Academy of Sciences.

Hendrickson, Bruce A.; Laviolette, Randall A.; Phillips, Cynthia A.; Berry, Jonathan W.

Communities of vertices within a giant network such as the World-Wide-Web are likely to be vastly smaller than the network itself. However, Fortunato and Barthelemy have proved that modularity maximization algorithms for community detection may fail to resolve communities with fewer than {radical} L/2 edges, where L is the number of edges in the entire network. This resolution limit leads modularity maximization algorithms to have notoriously poor accuracy on many real networks. Fortunato and Barthelemy's argument can be extended to networks with weighted edges as well, and we derive this corollary argument. We conclude that weighted modularity algorithms may fail to resolve communities with fewer than {radical} W{epsilon}/2 total edge weight, where W is the total edge weight in the network and {epsilon} is the maximum weight of an inter-community edge. If {epsilon} is small, then small communities can be resolved. Given a weighted or unweighted network, we describe how to derive new edge weights in order to achieve a low {epsilon}, we modify the 'CNM' community detection algorithm to maximize weighted modularity, and show that the resulting algorithm has greatly improved accuracy. In experiments with an emerging community standard benchmark, we find that our simple CNM variant is competitive with the most accurate community detection methods yet proposed.

More Details

The TEVA-SPOT toolkit for drinking water contaminant warning system design

World Environmental and Water Resources Congress 2008: Ahupua'a - Proceedings of the World Environmental and Water Resources Congress 2008

Hart, William E.; Berry, Jonathan W.; Boman, Erik G.; Murray, Regan; Phillips, Cynthia A.; Riesen, Lee A.; Watson, Jean-Paul W.

We present the TEVA-SPOT Toolkit, a sensor placement optimization tool developed within the USEPA TEVA program. The TEVA-SPOT Toolkit provides a sensor placement framework that facilitates research in sensor placement optimization and enables the practical application of sensor placement solvers to real-world CWS design applications. This paper provides an overview of its key features, and then illustrates how this tool can be flexibly applied to solve a variety of different types of sensor placement problems. © 2008 ASCE.

More Details

Limited-memory techniques for sensor placement in water distribution networks

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Hart, William E.; Berry, Jonathan W.; Boman, Erik G.; Phillips, Cynthia A.; Riesen, Lee A.; Watson, Jean-Paul W.

The practical utility of optimization technologies is often impacted by factors that reflect how these tools are used in practice, including whether various real-world constraints can be adequately modeled, the sophistication of the analysts applying the optimizer, and related environmental factors (e.g. whether a company is willing to trust predictions from computational models). Other features are less appreciated, but of equal importance in terms of dictating the successful use of optimization. These include the scale of problem instances, which in practice drives the development of approximate solution techniques, and constraints imposed by the target computing platforms. End-users often lack state-of-the-art computers, and thus runtime and memory limitations are often a significant, limiting factor in algorithm design. When coupled with large problem scale, the result is a significant technological challenge. We describe our experience developing and deploying both exact and heuristic algorithms for placing sensors in water distribution networks to mitigate against damage due intentional or accidental introduction of contaminants. The target computing platforms for this application have motivated limited-memory techniques that can optimize large-scale sensor placement problems. © 2008 Springer Berlin Heidelberg.

More Details

LDRD final report : robust analysis of large-scale combinatorial applications

Hart, William E.; Carr, Robert D.; Phillips, Cynthia A.; Watson, Jean-Paul W.

Discrete models of large, complex systems like national infrastructures and complex logistics frameworks naturally incorporate many modeling uncertainties. Consequently, there is a clear need for optimization techniques that can robustly account for risks associated with modeling uncertainties. This report summarizes the progress of the Late-Start LDRD 'Robust Analysis of Largescale Combinatorial Applications'. This project developed new heuristics for solving robust optimization models, and developed new robust optimization models for describing uncertainty scenarios.

More Details

Robust optimization of contaminant sensor placement for community water systems

Mathematical Programming

Carr, Robert D.; Greenberg, Harvey J.; Hart, William E.; Konjevod, Goran; Lauer, Erik; Lin, Henry; Morrison, Tod; Phillips, Cynthia A.

We present a series of related robust optimization models for placing sensors in municipal water networks to detect contaminants that are maliciously or accidentally injected. We formulate sensor placement problems as mixed-integer programs, for which the objective coefficients are not known with certainty. We consider a restricted absolute robustness criteria that is motivated by natural restrictions on the uncertain data, and we define three robust optimization models that differ in how the coefficients in the objective vary. Under one set of assumptions there exists a sensor placement that is optimal for all admissible realizations of the coefficients. Under other assumptions, we can apply sorting to solve each worst-case realization efficiently, or we can apply duality to integrate the worst-case outcome and have one integer program. The most difficult case is where the objective parameters are bilinear, and we prove its complexity is NP-hard even under simplifying assumptions. We consider a relaxation that provides an approximation, giving an overall guarantee of near-optimality when used with branch-and-bound search. We present preliminary computational experiments that illustrate the computational complexity of solving these robust formulations on sensor placement applications.

More Details

LDRD final report on massively-parallel linear programming : the parPCx system

Boman, Erik G.; Phillips, Cynthia A.

This report summarizes the research and development performed from October 2002 to September 2004 at Sandia National Laboratories under the Laboratory-Directed Research and Development (LDRD) project ''Massively-Parallel Linear Programming''. We developed a linear programming (LP) solver designed to use a large number of processors. LP is the optimization of a linear objective function subject to linear constraints. Companies and universities have expended huge efforts over decades to produce fast, stable serial LP solvers. Previous parallel codes run on shared-memory systems and have little or no distribution of the constraint matrix. We have seen no reports of general LP solver runs on large numbers of processors. Our parallel LP code is based on an efficient serial implementation of Mehrotra's interior-point predictor-corrector algorithm (PCx). The computational core of this algorithm is the assembly and solution of a sparse linear system. We have substantially rewritten the PCx code and based it on Trilinos, the parallel linear algebra library developed at Sandia. Our interior-point method can use either direct or iterative solvers for the linear system. To achieve a good parallel data distribution of the constraint matrix, we use a (pre-release) version of a hypergraph partitioner from the Zoltan partitioning library. We describe the design and implementation of our new LP solver called parPCx and give preliminary computational results. We summarize a number of issues related to efficient parallel solution of LPs with interior-point methods including data distribution, numerical stability, and solving the core linear system using both direct and iterative methods. We describe a number of applications of LP specific to US Department of Energy mission areas and we summarize our efforts to integrate parPCx (and parallel LP solvers in general) into Sandia's massively-parallel integer programming solver PICO (Parallel Interger and Combinatorial Optimizer). We conclude with directions for long-term future algorithmic research and for near-term development that could improve the performance of parPCx.

More Details

Validation and assessment of integer programming sensor placement models

Berry, Jonathan W.; Hart, William E.; Phillips, Cynthia A.; Watson, Jean-Paul W.

We consider the accuracy of predictions made by integer programming (IP) models of sensor placement for water security applications. We have recently shown that IP models can be used to find optimal sensor placements for a variety of different performance criteria (e.g. minimize health impacts and minimize time to detection). However, these models make a variety of simplifying assumptions that might bias the final solution. We show that our IP modeling assumptions are similar to models developed for other sensor placement methodologies, and thus IP models should give similar predictions. However, this discussion highlights that there are significant differences in how temporal effects are modeled for sensor placement. We describe how these modeling assumptions can impact sensor placements.

More Details
Results 126–150 of 158
Results 126–150 of 158