Publications

Results 26–50 of 114
Skip to search filters

ASC ATDM Level 2 Milestone #6358: Assess Status of Next Generation Components and Physics Models in EMPIRE

Bettencourt, Matthew T.; Kramer, Richard M.; Cartwright, Keith C.; Phillips, Edward G.; Ober, Curtis C.; Pawlowski, Roger P.; Swan, Matthew S.; Kalashnikova, Irina; Phipps, Eric T.; Conde, Sidafa C.; Cyr, Eric C.; Ulmer, Craig D.; Kordenbrock, Todd H.; Levy, Scott L.; Templet, Gary J.; Hu, Jonathan J.; Lin, Paul L.; Glusa, Christian A.; Siefert, Christopher S.; Glass, Micheal W.

This report documents the outcome from the ASC ATDM Level 2 Milestone 6358: Assess Status of Next Generation Components and Physics Models in EMPIRE. This Milestone is an assessment of the EMPIRE (ElectroMagnetic Plasma In Realistic Environments) application and three software components. The assessment focuses on the electromagnetic and electrostatic particle-in-cell solu- tions for EMPIRE and its associated solver, time integration, and checkpoint-restart components. This information provides a clear understanding of the current status of the EMPIRE application and will help to guide future work in FY19 in order to ready the application for the ASC ATDM L 1 Milestone in FY20. It is clear from this assessment that performance of the linear solver will have to be a focus in FY19.

More Details

Formulation and computation of dynamic, interface-compatible Whitney complexes in three dimensions

Journal of Computational Physics

Kramer, Richard M.; Siefert, Christopher S.; Voth, Thomas E.; Bochev, Pavel B.

A discrete De Rham complex enables compatible, structure-preserving discretizations for a broad range of partial differential equations problems. Such discretizations can correctly reproduce the physics of interface problems, provided the grid conforms to the interface. However, large deformations, complex geometries, and evolving interfaces makes generation of such grids difficult. We develop and demonstrate two formally equivalent approaches that, for a given background mesh, dynamically construct an interface-conforming discrete De Rham complex. Both approaches start by dividing cut elements into interface-conforming subelements but differ in how they build the finite element basis on these subelements. The first approach discards the existing non-conforming basis of the parent element and replaces it by a dynamic set of degrees of freedom of the same kind. The second approach defines the interface-conforming degrees of freedom on the subelements as superpositions of the basis functions of the parent element. These approaches generalize the Conformal Decomposition Finite Element Method (CDFEM) and the extended finite element method with algebraic constraints (XFEM-AC), respectively, across the De Rham complex.

More Details

Ifpack2 User's Guide 1.0

Prokopenko, Andrey V.; Siefert, Christopher S.; Hu, Jonathan J.; Hoemmen, Mark F.; Klinvex, Alicia M.

This is the definitive user manual for the I FPACK 2 package in the Trilinos project. I FPACK 2 pro- vides implementations of iterative algorithms (e.g., Jacobi, SOR, additive Schwarz) and processor- based incomplete factorizations. I FPACK 2 is part of the Trilinos T PETRA solver stack, is templated on index, scalar, and node types, and leverages node-level parallelism indirectly through its use of T PETRA kernels. I FPACK 2 can be used to solve to matrix systems with greater than 2 billion rows (using 64-bit indices). Any options not documented in this manual should be considered strictly experimental .

More Details

Reducing communication costs for sparse matrix multiplication within algebraic multigrid

SIAM Journal on Scientific Computing

Ballard, Grey B.; Siefert, Christopher S.; Hu, Jonathan J.

We consider the sequence of sparse matrix-matrix multiplications performed during the setup phase of algebraic multigrid. In particular, we show that the most commonly used parallel algorithm is often not the most communication-efficient one for all of the matrix-matrix multiplications involved. By using an alternative algorithm, we show that the communication costs are reduced (in theory and practice), and we demonstrate the performance benefit for both model (structured) and more realistic unstructured problems on large-scale distributed-memory parallel systems. Our theoretical analysis shows that we can reduce communication by a factor of up to 5.4 for a model problem, and we observe in our empirical evaluation communication reductions of factors up to 4.7 for structured problems and 3.7 for unstructured problems. These reductions in communication translate to run-time speedups of factors up to 2.8 and 2.5, respectively.

More Details
Results 26–50 of 114
Results 26–50 of 114

Current Filters

Clear all