Publications

Results 26–50 of 114
Skip to search filters

Two-level main memory co-design: Multi-threaded algorithmic primitives, analysis, and simulation

Journal of Parallel and Distributed Computing

Bender, Michael A.; Berry, Jonathan W.; Hammond, Simon D.; Hemmert, Karl S.; McCauley, Samuel; Moore, Branden J.; Moseley, Benjamin; Phillips, Cynthia A.; Resnick, David R.; Rodrigues, Arun

A challenge in computer architecture is that processors often cannot be fed data from DRAM as fast as CPUs can consume it. Therefore, many applications are memory-bandwidth bound. With this motivation and the realization that traditional architectures (with all DRAM reachable only via bus) are insufficient to feed groups of modern processing units, vendors have introduced a variety of non-DDR 3D memory technologies (Hybrid Memory Cube (HMC),Wide I/O 2, High Bandwidth Memory (HBM)). These offer higher bandwidth and lower power by stacking DRAM chips on the processor or nearby on a silicon interposer. We will call these solutions “near-memory,” and if user-addressable, “scratchpad.” High-performance systems on the market now offer two levels of main memory: near-memory on package and traditional DRAM further away. In the near term we expect the latencies near-memory and DRAM to be similar. Thus, it is natural to think of near-memory as another module on the DRAM level of the memory hierarchy. Vendors are expected to offer modes in which the near memory is used as cache, but we believe that this will be inefficient. In this paper, we explore the design space for a user-controlled multi-level main memory. Our work identifies situations in which rewriting application kernels can provide significant performance gains when using near-memory. We present algorithms designed for two-level main memory, using divide-and-conquer to partition computations and streaming to exploit data locality. We consider algorithms for the fundamental application of sorting and for the data analysis kernel k-means. Our algorithms asymptotically reduce memory-block transfers under certain architectural parameter settings. We use and extend Sandia National Laboratories’ SST simulation capability to demonstrate the relationship between increased bandwidth and improved algorithmic performance. Memory access counts from simulations corroborate predicted performance improvements for our sorting algorithm. In contrast, the k-means algorithm is generally CPU bound and does not improve when using near-memory except under extreme conditions. These conditions require large instances that rule out SST simulation, but we demonstrate improvements by running on a customized machine with high and low bandwidth memory. These case studies in co-design serve as positive and cautionary templates, respectively, for the major task of optimizing the computational kernels of many fundamental applications for two-level main memory systems.

More Details

Messier: A Detailed NVM-Based DIMM Model for the SST Simulation Framework

Awad, Amro A.; Voskuilen, Gwendolyn R.; Rodrigues, Arun; Hammond, Simon D.; Hoekstra, Robert J.; Hughes, Clayton H.

DRAM technology is the main building block of main memory, however, DRAM scaling is becoming very challenging. The main issues for DRAM scaling are the increasing error rates with each new generation, the geometric and physical constraints of scaling the capacitor part of the DRAM cells, and the high power consumption caused by the continuous need for refreshing cell values. At the same time, emerging Non- Volatile Memory (NVM) technologies, such as Phase-Change Memory (PCM), are emerging as promising replacements for DRAM. NVMs, when compared to current technologies e.g., NAND-based ash, have latencies comparable to DRAM. Additionally, NVMs are non-volatile, which eliminates the need for refresh power and enables persistent memory applications. Finally, NVMs have promising densities and the potential for multi-level cell (MLC) storage.

More Details

Multi-level memory policies: What you add is more important than what you take out

ACM International Conference Proceeding Series

Hammond, Simon D.; Rodrigues, Arun; Voskuilen, Gwendolyn R.

Multi-Level Memory (MLM) will be an increasingly common organization for main memory. Hybrid main memories that combine conventional DDR and "fast" memory will allow higher peak bandwidth at an attainable cost. However, the chief hurdle for MLM systems is the management of data placement. While user-directed placement may work for some applications, it imposes a heavy burden on the programmer. To avoid this burden while still benefiting from MLM, we propose a number of automated management policies. Our results show that several possible policies offer performance and implementation trade offs. Also, unlike conventional cache or paged memory policies, the addition policy is much more important than the replacement policy.

More Details

Analyzing allocation behavior for multi-level memory

ACM International Conference Proceeding Series

Voskuilen, Gwendolyn R.; Rodrigues, Arun; Hammond, Simon D.

Managing multi-level memories will require different policies from those used for cache hierarchies, as memory technologies differ in latency, bandwidth, and volatility. To this end we analyze application data allocations and main memory accesses to determine whether an application-driven approach to managing a multi-level memory system comprising stacked and conventional DRAM is viable. Our early analysis shows that the approach is viable, but some applications may require dynamic allocations (i.e., migration) while others are amenable to static allocation.

More Details

Abstract Machine Models and Proxy Architectures for Exascale Computing

Ang, James A.; Barrett, Richard F.; Benner, R.E.; Burke, Daniel B.; Chan, Cy P.; Cook, Jeanine C.; Daley, Christopher D.; Donofrio, Dave D.; Hammond, Simon D.; Hemmert, Karl S.; Hoekstra, Robert J.; Ibrahim, Khaled I.; Kelly, Suzanne M.; Le, Hoang L.; Leung, Vitus J.; Michelogiannakis, George M.; Resnick, David R.; Rodrigues, Arun; Shalf, John S.; Stark, Dylan S.; Unat, D.U.; Wright, Nick W.; Voskuilen, Gwendolyn R.

Machine Models and Proxy Architectures for Exascale Computing Version 2.0 Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep- resent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: (865) 576-8401 Facsimile: (865) 576-5728 E-Mail: reports@adonis.osti.gov Online ordering: http://www.osti.gov/bridge Available to the public from U.S. Department of Commerce National Technical Information Service 5285 Port Royal Rd Springfield, VA 22161 Telephone: (800) 553-6847 Facsimile: (703) 605-6900 E-Mail: orders@ntis.fedworld.gov Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online D E P A R T M E N T O F E N E R G Y * * U N I T E D S T A T E S O F A M E R I C A SAND2016-6049 Unlimited Release Printed Abstract Machine Models and Proxy Architectures for Exascale Computing Version 2.0 J.A. Ang 1 , R.F. Barrett 1 , R.E. Benner 1 , D. Burke 2 , C. Chan 2 , J. Cook 1 , C.S. Daley 2 , D. Donofrio 2 , S.D. Hammond 1 , K.S. Hemmert 1 , R.J. Hoekstra 1 , K. Ibrahim 2 , S.M. Kelly 1 , H. Le, V.J. Leung 1 , G. Michelogiannakis 2 , D.R. Resnick 1 , A.F. Rodrigues 1 , J. Shalf 2 , D. Stark, D. Unat, N.J. Wright 2 , G.R. Voskuilen 1 1 1 Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185-MS 1319 2 Lawrence Berkeley National Laboratory, Berkeley, California Abstract To achieve exascale computing, fundamental hardware architectures must change. The most sig- nificant consequence of this assertion is the impact on the scientific and engineering applications that run on current high performance computing (HPC) systems, many of which codify years of scientific domain knowledge and refinements for contemporary computer systems. In order to adapt to exascale architectures, developers must be able to reason about new hardware and deter- mine what programming models and algorithms will provide the best blend of performance and energy efficiency into the future. While many details of the exascale architectures are undefined, an abstract machine model is designed to allow application developers to focus on the aspects of the machine that are important or relevant to performance and code structure. These models are intended as communication aids between application developers and hardware architects during the co-design process. We use the term proxy architecture to describe a parameterized version of an abstract machine model, with the parameters added to elucidate potential speeds and capacities of key hardware components. These more detailed architectural models are formulated to enable discussion between the developers of analytic models and simulators and computer hardware archi- tects. They allow for application performance analysis and hardware optimization opportunities. In this report our goal is to provide the application development community with a set of mod- els that can help software developers prepare for exascale. In addition, through the use of proxy architectures, we can enable a more concrete exploration of how well new and evolving applica- tion codes map onto future architectures. This second version of the document addresses system scale considerations and provides a system-level abstract machine model with proxy architecture information.

More Details

Optical networks for high-performance computing: Promises and perils

5th IEEE Photonics Society Optical Interconnects Conference, OI 2016

Rodrigues, Arun

Optical networks hold great promise for improving the performance of supercomputers, yet they have always proven just out of reach. This talk will examine the potential of optical interconnects, barriers to adoption, and possible solutions from hardware/software co-design.

More Details
Results 26–50 of 114
Results 26–50 of 114

Current Filters

Clear all