Publications

Results 1–25 of 145
Skip to search filters

Resilience Enhancements through Deep Learning Yields

Eydenberg, Michael S.; Batsch-Smith, Lisa B.; Bice, Charles T.; Blakely, Logan; Bynum, Michael L.; Boukouvala, Fani B.; Castillo, Anya C.; Haddad, Joshua H.; Hart, William E.; Jalving, Jordan H.; Kilwein, Zachary A.; Laird, Carl D.; Skolfield, Joshua K.

This report documents the Resilience Enhancements through Deep Learning Yields (REDLY) project, a three-year effort to improve electrical grid resilience by developing scalable methods for system operators to protect the grid against threats leading to interrupted service or physical damage. The computational complexity and uncertain nature of current real-world contingency analysis presents significant barriers to automated, real-time monitoring. While there has been a significant push to explore the use of accurate, high-performance machine learning (ML) model surrogates to address this gap, their reliability is unclear when deployed in high-consequence applications such as power grid systems. Contemporary optimization techniques used to validate surrogate performance can exploit ML model prediction errors, which necessitates the verification of worst-case performance for the models.

More Details

Science and Engineering of Cybersecurity by Uncertainty quantification and Rigorous Experimentation (SECURE) (Final Report)

Pinar, Ali P.; Tarman, Thomas D.; Swiler, Laura P.; Gearhart, Jared L.; Hart, Derek H.; Vugrin, Eric D.; Cruz, Gerardo C.; Arguello, Bryan A.; Geraci, Gianluca G.; Debusschere, Bert D.; Hanson, Seth T.; Outkin, Alexander V.; Thorpe, Jamie T.; Hart, William E.; Sahakian, Meghan A.; Gabert, Kasimir G.; Glatter, Casey J.; Johnson, Emma S.; Punla-Green, She?ifa P.

This report summarizes the activities performed as part of the Science and Engineering of Cybersecurity by Uncertainty quantification and Rigorous Experimentation (SECURE) Grand Challenge LDRD project. We provide an overview of the research done in this project, including work on cyber emulation, uncertainty quantification, and optimization. We present examples of integrated analyses performed on two case studies: a network scanning/detection study and a malware command and control study. We highlight the importance of experimental workflows and list references of papers and presentations developed under this project. We outline lessons learned and suggestions for future work.

More Details

Science & Engineering of Cyber Security by Uncertainty Quantification and Rigorous Experimentation (SECURE) HANDBOOK

Pinar, Ali P.; Tarman, Thomas D.; Swiler, Laura P.; Gearhart, Jared L.; Hart, Derek H.; Vugrin, Eric D.; Cruz, Gerardo C.; Arguello, Bryan A.; Geraci, Gianluca G.; Debusschere, Bert D.; Hanson, Seth T.; Outkin, Alexander V.; Thorpe, Jamie T.; Hart, William E.; Sahakian, Meghan A.; Gabert, Kasimir G.; Glatter, Casey J.; Johnson, Emma S.; Punla-Green, She?ifa P.

Abstract not provided.

Large-scale Nonlinear Approaches for Inference of Reporting Dynamics and Unobserved SARS-CoV-2 Infections

Hart, William E.; Bynum, Michael L.; Laird, Carl L.; Siirola, John D.; Staid, Andrea S.

This work focuses on estimation of unknown states and parameters in a discrete-time, stochastic, SEIR model using reported case counts and mortality data. An SEIR model is based on classifying individuals with respect to their status in regards to the progression of the disease, where S is the number individuals who remain susceptible to the disease, E is the number of individuals who have been exposed to the disease but not yet infectious, I is the number of individuals who are currently infectious, and R is the number of recovered individuals. For convenience, we include in our notation the number of infections or transmissions, T, that represents the number of individuals transitioning from compartment S to compartment E over a particular interval. Similarly, we use C to represent the number of reported cases.

More Details

Spatio-temporal Estimates of Disease Transmission Parameters for COVID-19 with a Fully-Coupled, County-Level Model of the United States

Cummings, Derek A.; Hart, William E.; García-Carreras, Bernardo G.; Lanning, Carl D.; Lessler, Justin L.; Staid, Andrea S.

Sandia National Laboratories has developed a capability to estimate parameters of epidemiological models from case reporting data to support responses to the COVID-19 pandemic. A differentiating feature of this work is the ability to simultaneously estimate county-specific disease transmission parameters in a nation-wide model that considers mobility between counties. The approach is focused on estimating parameters in a stochastic SEIR model that considers mobility between model patches (i.e., counties) as well as additional infectious compartments. The inference engine developed by Sandia includes (1) reconstruction and (2) transmission parameter inference. Reconstruction involves estimating current population counts within each of the compartments in a modified SEIR model from reported case data. Reconstruction produces input for the inference formulations, and it provides initial conditions that can be used in other modeling and planning efforts. Inference involves the solution of a large-scale optimization problem to estimate the time profiles for the transmission parameters in each county. These provide quantification of changes in the transmission parameter over time (e.g., due to impact of intervention strategies). This capability has been implemented in a Python-based software package, epi_inference, that makes extensive use of Pyomo [5] and IPOPT [10] to formulate and solve the inference formulations.

More Details

An Analysis of Multiple Contaminant Warning System Design Objectives for Sensor Placement Optimization in Water Distribution Networks

International Series in Operations Research and Management Science

Watson, Jean P.; Hart, William E.; Greenberg, Harvey J.; Phillips, Cynthia A.

A key strategy for protecting municipal water supplies is the use of sensors to detect the presence of contaminants in associated water distribution systems. Deploying a contamination warning system involves the placement of a limited number of sensors—placed in order to maximize the level of protection afforded. Researchers have proposed several models and algorithms for generating such placements, each optimizing with respect to a different design objective. The use of disparate design objectives raises several questions: (1) What is the relationship between optimal sensor placements for different design objectives? and (2) Is there any risk in focusing on specific design objectives? We model the sensor placement problem via a mixed-integer programming formulation of the well-known p-median problem from facility location theory to answer these questions. Our model can express a broad range of design objectives. Using three large test networks, we show that optimal solutions with respect to one design objective are often highly sub-optimal with respect to other design objectives. However, it is sometimes possible to construct solutions that are simultaneously near-optimal with respect to a range of design objectives. The design of contamination warning systems thus requires careful and simultaneous consideration of multiple, disparate design objectives.

More Details
Results 1–25 of 145
Results 1–25 of 145

Current Filters

Clear all