Publications

10 Results
Skip to search filters

An adaptive local reduced basis method for solving PDEs with uncertain inputs and evaluating risk

Computer Methods in Applied Mechanics and Engineering

Zou, Zilong; Kouri, Drew P.; Aquino, Wilkins A.

Many physical systems are modeled using partial differential equations (PDEs) with uncertain or random inputs. For such systems, naively propagating a fixed number of samples of the input probability law (or an approximation thereof) through the PDE is often inadequate to accurately quantify the “risk” associated with critical system responses. In this paper, we develop a goal-oriented, adaptive sampling and local reduced basis approximation for PDEs with random inputs. Our method determines a set of samples and an associated (implicit) Voronoi partition of the parameter domain on which we build local reduced basis approximations of the PDE solution. The samples are selected in an adaptive manner using an a posteriori error indicator. A notable advantage of the proposed approach is that the computational cost of the approximation during the adaptive process remains constant. We provide theoretical error bounds for our approximation and numerically demonstrate the performance of our method when compared to widely used adaptive sparse grid techniques. In addition, we tailor our approach to accurately quantify the risk of quantities of interest that depend on the PDE solution. We demonstrate our method on an advection–diffusion example and a Helmholtz example.

More Details

Inversion for Eigenvalues and Modes Using Sierra-SD and ROL

Walsh, Timothy W.; Aquino, Wilkins A.; Ridzal, Denis R.; Kouri, Drew P.

In this report we formulate eigenvalue-based methods for model calibration using a PDE-constrained optimization framework. We derive the abstract optimization operators from first principles and implement these methods using Sierra-SD and the Rapid Optimization Library (ROL). To demon- strate this approach, we use experimental measurements and an inverse solution to compute the joint and elastic foam properties of a low-fidelity unit (LFU) model.

More Details

Viscoelastic material inversion using Sierra-SD and ROL

Walsh, Timothy W.; Aquino, Wilkins A.; Ridzal, Denis R.; Kouri, Drew P.; van Bloemen Waanders, Bart G.; Urbina, Angel U.

In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.

More Details
10 Results
10 Results

Current Filters

Clear all