Publications

10 Results
Skip to search filters

Shock compression of strongly correlated oxides: A liquid-regime equation of state for cerium(IV) oxide

Physical Review B

Weck, Philippe F.; Cochrane, Kyle C.; Root, Seth R.; Lane, J.M.; Shulenburger, Luke N.; Carpenter, John H.; Sjostrom, Travis; Mattsson, Thomas M.; Vogler, Tracy V.

The shock Hugoniot for full-density and porous CeO2 was investigated in the liquid regime using ab initio molecular dynamics (AIMD) simulations with Erpenbeck's approach based on the Rankine-Hugoniot jump conditions. The phase space was sampled by carrying out NVT simulations for isotherms between 6000 and 100 000 K and densities ranging from ρ=2.5 to 20g/cm3. The impact of on-site Coulomb interaction corrections +U on the equation of state (EOS) obtained from AIMD simulations was assessed by direct comparison with results from standard density functional theory simulations. Classical molecular dynamics (CMD) simulations were also performed to model atomic-scale shock compression of larger porous CeO2 models. Results from AIMD and CMD compression simulations compare favorably with Z-machine shock data to 525 GPa and gas-gun data to 109 GPa for porous CeO2 samples. Using results from AIMD simulations, an accurate liquid-regime Mie-Grüneisen EOS was built for CeO2. In addition, a revised multiphase SESAME-Type EOS was constrained using AIMD results and experimental data generated in this work. This study demonstrates the necessity of acquiring data in the porous regime to increase the reliability of existing analytical EOS models.

More Details

Enhanced densification, strength and molecular mechanisms in shock compressed porous silicon

AIP Conference Proceedings

Matthew, J.; Lane, D.; Thompson, Aidan P.; Vogler, Tracy V.

We have recently shown that the final density of silicon under shock compression is anomalously enhanced by introducing voids in the initial uncompressed material. Using molecular simulation, we also demonstrated a molecular mechanism for the effect, which is seen in a growing class of other similar materials. We have shown that this mechanism involves a premature local phase transition nucleated by local shear strain. At higher shock loads we show here that this transition becomes frustrated producing amorphous silicon.We also observe local melting below the equilibrium melt line for bulk silicon. Large-scale non-equilibrium molecular dynamics (NEMD) and Hugoniostat simulations of shock compressed porous silicon are used to study the mechanism. Final stress states and strength were characterized versus initial porosity and for various porosity microstructures.

More Details

Enhanced densification under shock compression in porous silicon

Physical Review B - Condensed Matter and Materials Physics

Lane, J.M.; Thompson, Aidan P.; Vogler, Tracy V.

Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. We demonstrate a molecular mechanism that drives this behavior. We also present evidence from atomistic simulation that silicon belongs to this anomalous class of materials. Atomistic simulations indicate that local shear strain in the neighborhood of collapsing pores nucleates a local solid-solid phase transformation even when bulk pressures are below the thermodynamic phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.

More Details
10 Results
10 Results

Current Filters

Clear all