Publications

10 Results
Skip to search filters

Science and Engineering of Cybersecurity by Uncertainty quantification and Rigorous Experimentation (SECURE) (Final Report)

Pinar, Ali P.; Tarman, Thomas D.; Swiler, Laura P.; Gearhart, Jared L.; Hart, Derek H.; Vugrin, Eric D.; Cruz, Gerardo C.; Arguello, Bryan A.; Geraci, Gianluca G.; Debusschere, Bert D.; Hanson, Seth T.; Outkin, Alexander V.; Thorpe, Jamie T.; Hart, William E.; Sahakian, Meghan A.; Gabert, Kasimir G.; Glatter, Casey J.; Johnson, Emma S.; Punla-Green, She?ifa P.

This report summarizes the activities performed as part of the Science and Engineering of Cybersecurity by Uncertainty quantification and Rigorous Experimentation (SECURE) Grand Challenge LDRD project. We provide an overview of the research done in this project, including work on cyber emulation, uncertainty quantification, and optimization. We present examples of integrated analyses performed on two case studies: a network scanning/detection study and a malware command and control study. We highlight the importance of experimental workflows and list references of papers and presentations developed under this project. We outline lessons learned and suggestions for future work.

More Details

Science & Engineering of Cyber Security by Uncertainty Quantification and Rigorous Experimentation (SECURE) HANDBOOK

Pinar, Ali P.; Tarman, Thomas D.; Swiler, Laura P.; Gearhart, Jared L.; Hart, Derek H.; Vugrin, Eric D.; Cruz, Gerardo C.; Arguello, Bryan A.; Geraci, Gianluca G.; Debusschere, Bert D.; Hanson, Seth T.; Outkin, Alexander V.; Thorpe, Jamie T.; Hart, William E.; Sahakian, Meghan A.; Gabert, Kasimir G.; Glatter, Casey J.; Johnson, Emma S.; Punla-Green, She?ifa P.

Abstract not provided.

Foundations of Rigorous Cyber Experimentation

Stickland, Michael S.; Li, Justin D.; Swiler, Laura P.; Tarman, Thomas D.

This report presents the results of the “Foundations of Rigorous Cyber Experimentation” (FORCE) Laboratory Directed Research and Development (LDRD) project. This project is a companion project to the “Science and Engineering of Cyber security through Uncertainty quantification and Rigorous Experimentation” (SECURE) Grand Challenge LDRD project. This project leverages the offline, controlled nature of cyber experimentation technologies in general, and emulation testbeds in particular, to assess how uncertainties in network conditions affect uncertainties in key metrics. We conduct extensive experimentation using a Firewheel emulation-based cyber testbed model of Invisible Internet Project (I2P) networks to understand a de-anonymization attack formerly presented in the literature. Our goals in this analysis are to see if we can leverage emulation testbeds to produce reliably repeatable experimental networks at scale, identify significant parameters influencing experimental results, replicate the previous results, quantify uncertainty associated with the predictions, and apply multi-fidelity techniques to forecast results to real-world network scales. The I2P networks we study are up to three orders of magnitude larger than the networks studied in SECURE and presented additional challenges to identify significant parameters. The key contributions of this project are the application of SECURE techniques such as UQ to a scenario of interest and scaling the SECURE techniques to larger network sizes. This report describes the experimental methods and results of these studies in more detail. In addition, the process of constructing these large-scale experiments tested the limits of the Firewheel emulation-based technologies. Therefore, another contribution of this work is that it informed the Firewheel developers of scaling limitations, which were subsequently corrected.

More Details

Comparing reproduced cyber experimentation studies across different emulation testbeds

ACM International Conference Proceeding Series

Tarman, Thomas D.; Rollins, Trevor; Swiler, Laura P.; Cruz, Gerardo C.; Vugrin, Eric D.; Huang, Hao; Sahu, Abhijeet; Wlazlo, Patrick; Goulart, Ana; Davis, Kate

Cyber testbeds provide an important mechanism for experimentally evaluating cyber security performance. However, as an experimental discipline, reproducible cyber experimentation is essential to assure valid, unbiased results. Even minor differences in setup, configuration, and testbed components can have an impact on the experiments, and thus, reproducibility of results. This paper documents a case study in reproducing an earlier emulation study, with the reproduced emulation experiment conducted by a different research group on a different testbed. We describe lessons learned as a result of this process, both in terms of the reproducibility of the original study and in terms of the different testbed technologies used by both groups. This paper also addresses the question of how to compare results between two groups' experiments, identifying candidate metrics for comparison and quantifying the results in this reproduction study.

More Details

SECURE: An Evidence-based Approach to Cyber Experimentation

Proceedings - 2019 Resilience Week, RWS 2019

Pinar, Ali P.; Benz, Zachary O.; Castillo, Anya; Hart, Bill; Swiler, Laura P.; Tarman, Thomas D.

Securing cyber systems is of paramount importance, but rigorous, evidence-based techniques to support decision makers for high-consequence decisions have been missing. The need for bringing rigor into cybersecurity is well-recognized, but little progress has been made over the last decades. We introduce a new project, SECURE, that aims to bring more rigor into cyber experimentation. The core idea is to follow the footsteps of computational science and engineering and expand similar capabilities to support rigorous cyber experimentation. In this paper, we review the cyber experimentation process, present the research areas that underlie our effort, discuss the underlying research challenges, and report on our progress to date. This paper is based on work in progress, and we expect to have more complete results for the conference.

More Details
10 Results
10 Results

Current Filters

Clear all