Publications

6 Results
Skip to search filters

Exploring Explicit Uncertainty for Binary Analysis (EUBA)

Leger, Michelle A.; Darling, Michael C.; Jones, Stephen T.; Matzen, Laura E.; Stracuzzi, David J.; Wilson, Andrew T.; Bueno, Denis B.; Christentsen, Matthew C.; Ginaldi, Melissa J.; Hannasch, David A.; Heidbrink, Scott H.; Howell, Breannan C.; Leger, Chris; Reedy, Geoffrey E.; Rogers, Alisa N.; Williams, Jack A.

Reverse engineering (RE) analysts struggle to address critical questions about the safety of binary code accurately and promptly, and their supporting program analysis tools are simply wrong sometimes. The analysis tools have to approximate in order to provide any information at all, but this means that they introduce uncertainty into their results. And those uncertainties chain from analysis to analysis. We hypothesize that exposing sources, impacts, and control of uncertainty to human binary analysts will allow the analysts to approach their hardest problems with high-powered analytic techniques that they know when to trust. Combining expertise in binary analysis algorithms, human cognition, uncertainty quantification, verification and validation, and visualization, we pursue research that should benefit binary software analysis efforts across the board. We find a strong analogy between RE and exploratory data analysis (EDA); we begin to characterize sources and types of uncertainty found in practice in RE (both in the process and in supporting analyses); we explore a domain-specific focus on uncertainty in pointer analysis, showing that more precise models do help analysts answer small information flow questions faster and more accurately; and we test a general population with domain-general sudoku problems, showing that adding "knobs" to an analysis does not significantly slow down performance. This document describes our explorations in uncertainty in binary analysis.

More Details

Evaluating Moving Target Defense with PLADD

Jones, Stephen T.; Outkin, Alexander V.; Gearhart, Jared L.; Hobbs, Jacob A.; Siirola, John D.; Phillips, Cynthia A.; Verzi, Stephen J.; Tauritz, Daniel T.; Mulder, Samuel A.; Naugle, Asmeret B.

This project evaluates the effectiveness of moving target defense (MTD) techniques using a new game we have designed, called PLADD, inspired by the game FlipIt [28]. PLADD extends FlipIt by incorporating what we believe are key MTD concepts. We have analyzed PLADD and proven the existence of a defender strategy that pushes a rational attacker out of the game, demonstrated how limited the strategies available to an attacker are in PLADD, and derived analytic expressions for the expected utility of the game’s players in multiple game variants. We have created an algorithm for finding a defender’s optimal PLADD strategy. We show that in the special case of achieving deterrence in PLADD, MTD is not always cost effective and that its optimal deployment may shift abruptly from not using MTD at all to using it as aggressively as possible. We believe our effort provides basic, fundamental insights into the use of MTD, but conclude that a truly practical analysis requires model selection and calibration based on real scenarios and empirical data. We propose several avenues for further inquiry, including (1) agents with adaptive capabilities more reflective of real world adversaries, (2) the presence of multiple, heterogeneous adversaries, (3) computational game theory-based approaches such as coevolution to allow scaling to the real world beyond the limitations of analytical analysis and classical game theory, (4) mapping the game to real-world scenarios, (5) taking player risk into account when designing a strategy (in addition to expected payoff), (6) improving our understanding of the dynamic nature of MTD-inspired games by using a martingale representation, defensive forecasting, and techniques from signal processing, and (7) using adversarial games to develop inherently resilient cyber systems.

More Details
6 Results
6 Results

Current Filters

Clear all