In this work, a stabilized continuous Galerkin (CG) method for magnetohydrodynamics (MHD) is presented. Ideal, compressible inviscid MHD equations are discretized in space on unstructured meshes using piecewise linear or bilinear finite element bases to get a semi-discrete scheme. Stabilization is then introduced to the semi-discrete method in a strategy that follows the algebraic flux correction paradigm. This involves adding some artificial diffusion to the high order, semi-discrete method and mass lumping in the time derivative term. The result is a low order method that provides local extremum diminishing properties for hyperbolic systems. The difference between the low order method and the high order method is scaled element-wise using a limiter and added to the low order scheme. The limiter is solution dependent and computed via an iterative linearity preserving nodal variation limiting strategy. The stabilization also involves an optional consistent background high order dissipation that reduces phase errors. The resulting stabilized scheme is a semi-discrete method that can be applied to inviscid shock MHD problems and may be even extended to resistive and viscous MHD problems. To satisfy the divergence free constraint of the MHD equations, we add parabolic divergence cleaning to the system. Various time integration methods can be used to discretize the scheme in time. We demonstrate the robustness of the scheme by solving several shock MHD problems.
The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank–Nicolson scheme and backward Euler scheme are utilized.