Publications

Results 1–25 of 26
Skip to search filters

Optimal determination of grab sample locations and source inversion in large-scale water distribution systems

Water Distribution Systems Analysis 2010 - Proceedings of the 12th International Conference, WDSA 2010

Wong, Angelica; Young, James; Laird, Carl D.; Hart, William E.; Mckenna, Sean A.

We present a mixed-integer linear programming formulation to determine optimal locations for manual grab sampling after the detection of contaminants in a water distribution system. The formulation selects optimal manual grab sample locations that maximize the total pair-wise distinguishability of candidate contamination events. Given an initial contaminant detection location, a source inversion is performed that will eliminate unlikely events resulting in a much smaller set of candidate contamination events. We then propose a cyclical process where optimal grab samples locations are determined and manual grab samples taken. Relying only on YES/NO indicators of the presence of contaminant, source inversion is performed to reduce the set of candidate contamination events. The process is repeated until the number of candidate events is sufficiently small. Case studies testing this process are presented using water network models ranging from 4 to approximately 13000 nodes. The results demonstrate that the contamination event can be identified within a remarkably small number of sampling cycles using very few sampling teams. Furthermore, solution times were reasonable making this formulation suitable for real-time settings. © 2012 ASCE.

More Details

Bayesian data assimilation for stochastic multiscale models of transport in porous media

Lefantzi, Sophia L.; Klise, Katherine A.; Salazar, Luke S.; Mckenna, Sean A.; van Bloemen Waanders, Bart G.; Ray, Jaideep R.

We investigate Bayesian techniques that can be used to reconstruct field variables from partial observations. In particular, we target fields that exhibit spatial structures with a large spectrum of lengthscales. Contemporary methods typically describe the field on a grid and estimate structures which can be resolved by it. In contrast, we address the reconstruction of grid-resolved structures as well as estimation of statistical summaries of subgrid structures, which are smaller than the grid resolution. We perform this in two different ways (a) via a physical (phenomenological), parameterized subgrid model that summarizes the impact of the unresolved scales at the coarse level and (b) via multiscale finite elements, where specially designed prolongation and restriction operators establish the interscale link between the same problem defined on a coarse and fine mesh. The estimation problem is posed as a Bayesian inverse problem. Dimensionality reduction is performed by projecting the field to be inferred on a suitable orthogonal basis set, viz. the Karhunen-Loeve expansion of a multiGaussian. We first demonstrate our techniques on the reconstruction of a binary medium consisting of a matrix with embedded inclusions, which are too small to be grid-resolved. The reconstruction is performed using an adaptive Markov chain Monte Carlo method. We find that the posterior distributions of the inferred parameters are approximately Gaussian. We exploit this finding to reconstruct a permeability field with long, but narrow embedded fractures (which are too fine to be grid-resolved) using scalable ensemble Kalman filters; this also allows us to address larger grids. Ensemble Kalman filtering is then used to estimate the values of hydraulic conductivity and specific yield in a model of the High Plains Aquifer in Kansas. Strong conditioning of the spatial structure of the parameters and the non-linear aspects of the water table aquifer create difficulty for the ensemble Kalman filter. We conclude with a demonstration of the use of multiscale stochastic finite elements to reconstruct permeability fields. This method, though computationally intensive, is general and can be used for multiscale inference in cases where a subgrid model cannot be constructed.

More Details

Truncated multiGaussian fields and effective conductance of binary media

Advances in Water Resources

Mckenna, Sean A.; Ray, Jaideep R.; Marzouk, Youssef; van Bloemen Waanders, Bart G.

Truncated Gaussian fields provide a flexible model for defining binary media with dispersed (as opposed to layered) inclusions. General properties of excursion sets on these truncated fields are coupled with a distance-based upscaling algorithm and approximations of point process theory to develop an estimation approach for effective conductivity in two-dimensions. Estimation of effective conductivity is derived directly from knowledge of the kernel size used to create the multiGaussian field, defined as the full-width at half maximum (FWHM), the truncation threshold and conductance values of the two modes. Therefore, instantiation of the multiGaussian field is not necessary for estimation of the effective conductance. The critical component of the effective medium approximation developed here is the mean distance between high conductivity inclusions. This mean distance is characterized as a function of the FWHM, the truncation threshold and the ratio of the two modal conductivities. Sensitivity of the resulting effective conductivity to this mean distance is examined for two levels of contrast in the modal conductances and different FWHM sizes. Results demonstrate that the FWHM is a robust measure of mean travel distance in the background medium. The resulting effective conductivities are accurate when compared to numerical results and results obtained from effective media theory, distance-based upscaling and numerical simulation. © 2011 Elsevier Ltd.

More Details

The effect of error models in the multiscale inversion of binary permeability fields

Ray, Jaideep R.; van Bloemen Waanders, Bart G.; Mckenna, Sean A.

We present results from a recently developed multiscale inversion technique for binary media, with emphasis on the effect of subgrid model errors on the inversion. Binary media are a useful fine-scale representation of heterogeneous porous media. Averaged properties of the binary field representations can be used to characterize flow through the porous medium at the macroscale. Both direct measurements of the averaged properties and upscaling are complicated and may not provide accurate results. However, it may be possible to infer upscaled properties of the binary medium from indirect measurements at the coarse scale. Multiscale inversion, performed with a subgrid model to connect disparate scales together, can also yield information on the fine-scale properties. We model the binary medium using truncated Gaussian fields, and develop a subgrid model for the upscaled permeability based on excursion sets of those fields. The subgrid model requires an estimate of the proportion of inclusions at the block scale as well as some geometrical parameters of the inclusions as inputs, and predicts the effective permeability. The inclusion proportion is assumed to be spatially varying, modeled using Gaussian processes and represented using a truncated Karhunen-Louve (KL) expansion. This expansion is used, along with the subgrid model, to pose as a Bayesian inverse problem for the KL weights and the geometrical parameters of the inclusions. The model error is represented in two different ways: (1) as a homoscedastic error and (2) as a heteroscedastic error, dependent on inclusion proportionality and geometry. The error models impact the form of the likelihood function in the expression for the posterior density of the objects of inference. The problem is solved using an adaptive Markov Chain Monte Carlo method, and joint posterior distributions are developed for the KL weights and inclusion geometry. Effective permeabilities and tracer breakthrough times at a few 'sensor' locations (obtained by simulating a pump test) form the observables used in the inversion. The inferred quantities can be used to generate an ensemble of permeability fields, both upscaled and fine-scale, which are consistent with the observations. We compare the inferences developed using the two error models, in terms of the KL weights and fine-scale realizations that could be supported by the coarse-scale inferences. Permeability differences are observed mainly in regions where the inclusions proportion is near the percolation threshold, and the subgrid model incurs its largest approximation. These differences also reflected in the tracer breakthrough times and the geometry of flow streamlines, as obtained from a permeameter simulation. The uncertainty due to subgrid model error is also compared to the uncertainty in the inversion due to incomplete data.

More Details

Sensor placement for municipal water networks

Phillips, Cynthia A.; Boman, Erik G.; Carr, Robert D.; Hart, William E.; Berry, Jonathan W.; Watson, Jean-Paul W.; Hart, David B.; Mckenna, Sean A.; Riesen, Lee A.

We consider the problem of placing a limited number of sensors in a municipal water distribution network to minimize the impact over a given suite of contamination incidents. In its simplest form, the sensor placement problem is a p-median problem that has structure extremely amenable to exact and heuristic solution methods. We describe the solution of real-world instances using integer programming or local search or a Lagrangian method. The Lagrangian method is necessary for solution of large problems on small PCs. We summarize a number of other heuristic methods for effectively addressing issues such as sensor failures, tuning sensors based on local water quality variability, and problem size/approximation quality tradeoffs. These algorithms are incorporated into the TEVA-SPOT toolkit, a software suite that the US Environmental Protection Agency has used and is using to design contamination warning systems for US municipal water systems.

More Details

Posterior predictive modeling using multi-scale stochastic inverse parameter estimates

Mckenna, Sean A.; Ray, Jaideep R.; van Bloemen Waanders, Bart G.

Multi-scale binary permeability field estimation from static and dynamic data is completed using Markov Chain Monte Carlo (MCMC) sampling. The binary permeability field is defined as high permeability inclusions within a lower permeability matrix. Static data are obtained as measurements of permeability with support consistent to the coarse scale discretization. Dynamic data are advective travel times along streamlines calculated through a fine-scale field and averaged for each observation point at the coarse scale. Parameters estimated at the coarse scale (30 x 20 grid) are the spatially varying proportion of the high permeability phase and the inclusion length and aspect ratio of the high permeability inclusions. From the non-parametric, posterior distributions estimated for these parameters, a recently developed sub-grid algorithm is employed to create an ensemble of realizations representing the fine-scale (3000 x 2000), binary permeability field. Each fine-scale ensemble member is instantiated by convolution of an uncorrelated multiGaussian random field with a Gaussian kernel defined by the estimated inclusion length and aspect ratio. Since the multiGaussian random field is itself a realization of a stochastic process, the procedure for generating fine-scale binary permeability field realizations is also stochastic. Two different methods are hypothesized to perform posterior predictive tests. Different mechanisms for combining multi Gaussian random fields with kernels defined from the MCMC sampling are examined. Posterior predictive accuracy of the estimated parameters is assessed against a simulated ground truth for predictions at both the coarse scale (effective permeabilities) and at the fine scale (advective travel time distributions). The two techniques for conducting posterior predictive tests are compared by their ability to recover the static and dynamic data. The skill of the inference and the method for generating fine-scale binary permeability fields are evaluated through flow calculations on the resulting fields using fine-scale realizations and comparing them against results obtained with the ground truth fine-scale and coarse-scale permeability fields.

More Details

Integrating event detection system operation characteristics into sensor placement optimization

Hart, David B.; Hart, William E.; Mckenna, Sean A.; Phillips, Cynthia A.

We consider the problem of placing sensors in a municipal water network when we can choose both the location of sensors and the sensitivity and specificity of the contamination warning system. Sensor stations in a municipal water distribution network continuously send sensor output information to a centralized computing facility, and event detection systems at the control center determine when to signal an anomaly worthy of response. Although most sensor placement research has assumed perfect anomaly detection, signal analysis software has parameters that control the tradeoff between false alarms and false negatives. We describe a nonlinear sensor placement formulation, which we heuristically optimize with a linear approximation that can be solved as a mixed-integer linear program. We report the results of initial experiments on a real network and discuss tradeoffs between early detection of contamination incidents, and control of false alarms.

More Details
Results 1–25 of 26
Results 1–25 of 26

Current Filters

Clear all