Publications

8 Results
Skip to search filters

Evolutionary optimization of interatomic potentials using genetic programming

Jayaraman, Saivenkataraman J.

After more than 50 years of molecular simulations, accurate empirical models are still the bottleneck in the wide adoption of simulation techniques. Addressing this issue with a fresh paradigm is the need of the day. In this study, we outline a new genetic-programming based method to develop empirical models for a system purely from its energy and/or forces. While the approach was initially developed for the development of classical force-fields from ab-initio calculations, we also discuss its application to the molecular coarse-graining of methanol. Two models, one representing methanol by a single site and the other via two sites will be developed using this method. They will be validated against existing coarse-grained potentials for methanol by comparing thermophysical properties.

More Details

Solid-liquid phase coexistence of alkali nitrates from molecular dynamics simulations

Jayaraman, Saivenkataraman J.

Alkali nitrate eutectic mixtures are finding application as industrial heat transfer fluids in concentrated solar power generation systems. An important property for such applications is the melting point, or phase coexistence temperature. We have computed melting points for lithium, sodium and potassium nitrate from molecular dynamics simulations using a recently developed method, which uses thermodynamic integration to compute the free energy difference between the solid and liquid phases. The computed melting point for NaNO3 was within 15K of its experimental value, while for LiNO3 and KNO3, the computed melting points were within 100K of the experimental values [4]. We are currently extending the approach to calculate melting temperatures for binary mixtures of lithium and sodium nitrate.

More Details
8 Results
8 Results