Publications

25 Results
Skip to search filters

Thermodynamically consistent physics-informed neural networks for hyperbolic systems

Journal of Computational Physics

Patel, Ravi G.; Manickam, Indu; Trask, Nathaniel A.; Wood, Mitchell A.; Lee, Myoungkyu N.; Tomas, Ignacio T.; Cyr, Eric C.

Physics-informed neural network architectures have emerged as a powerful tool for developing flexible PDE solvers that easily assimilate data. When applied to problems in shock physics however, these approaches face challenges related to the collocation-based PDE discretization underpinning them. By instead adopting a least squares space-time control volume scheme, we obtain a scheme which more naturally handles: regularity requirements, imposition of boundary conditions, entropy compatibility, and conservation, substantially reducing requisite hyperparameters in the process. Additionally, connections to classical finite volume methods allows application of inductive biases toward entropy solutions and total variation diminishing properties. For inverse problems in shock hydrodynamics, we propose inductive biases for discovering thermodynamically consistent equations of state that guarantee hyperbolicity. This framework therefore provides a means of discovering continuum shock models from molecular simulations of rarefied gases and metals. The output of the learning process provides a data-driven equation of state which may be incorporated into traditional shock hydrodynamics codes.

More Details

A block coordinate descent optimizer for classification problems exploiting convexity

CEUR Workshop Proceedings

Patel, Ravi G.; Trask, Nathaniel A.; Gulian, Mamikon G.; Cyr, Eric C.

Second-order optimizers hold intriguing potential for deep learning, but suffer from increased cost and sensitivity to the non-convexity of the loss surface as compared to gradient-based approaches. We introduce a coordinate descent method to train deep neural networks for classification tasks that exploits global convexity of the cross-entropy loss in the weights of the linear layer. Our hybrid Newton/Gradient Descent (NGD) method is consistent with the interpretation of hidden layers as providing an adaptive basis and the linear layer as providing an optimal fit of the basis to data. By alternating between a second-order method to find globally optimal parameters for the linear layer and gradient descent to train the hidden layers, we ensure an optimal fit of the adaptive basis to data throughout training. The size of the Hessian in the second-order step scales only with the number weights in the linear layer and not the depth and width of the hidden layers; furthermore, the approach is applicable to arbitrary hidden layer architecture. Previous work applying this adaptive basis perspective to regression problems demonstrated significant improvements in accuracy at reduced training cost, and this work can be viewed as an extension of this approach to classification problems. We first prove that the resulting Hessian matrix is symmetric semi-definite, and that the Newton step realizes a global minimizer. By studying classification of manufactured two-dimensional point cloud data, we demonstrate both an improvement in validation error and a striking qualitative difference in the basis functions encoded in the hidden layer when trained using NGD. Application to image classification benchmarks for both dense and convolutional architectures reveals improved training accuracy, suggesting gains of second-order methods over gradient descent. A Tensorflow implementation of the algorithm is available at github.com/rgp62/.

More Details

A physics-informed operator regression framework for extracting data-driven continuum models

Computer Methods in Applied Mechanics and Engineering

Patel, Ravi G.; Trask, Nathaniel A.; Wood, Mitchell A.; Cyr, Eric C.

The application of deep learning toward discovery of data-driven models requires careful application of inductive biases to obtain a description of physics which is both accurate and robust. We present here a framework for discovering continuum models from high fidelity molecular simulation data. Our approach applies a neural network parameterization of governing physics in modal space, allowing a characterization of differential operators while providing structure which may be used to impose biases related to symmetry, isotropy, and conservation form. Here, we demonstrate the effectiveness of our framework for a variety of physics, including local and nonlocal diffusion processes and single and multiphase flows. For the flow physics we demonstrate this approach leads to a learned operator that generalizes to system characteristics not included in the training sets, such as variable particle sizes, densities, and concentration.

More Details
25 Results
25 Results

Current Filters

Clear all