Physics-informed neural network architectures have emerged as a powerful tool for developing flexible PDE solvers that easily assimilate data. When applied to problems in shock physics however, these approaches face challenges related to the collocation-based PDE discretization underpinning them. By instead adopting a least squares space-time control volume scheme, we obtain a scheme which more naturally handles: regularity requirements, imposition of boundary conditions, entropy compatibility, and conservation, substantially reducing requisite hyperparameters in the process. Additionally, connections to classical finite volume methods allows application of inductive biases toward entropy solutions and total variation diminishing properties. For inverse problems in shock hydrodynamics, we propose inductive biases for discovering thermodynamically consistent equations of state that guarantee hyperbolicity. This framework therefore provides a means of discovering continuum shock models from molecular simulations of rarefied gases and metals. The output of the learning process provides a data-driven equation of state which may be incorporated into traditional shock hydrodynamics codes.
Second-order optimizers hold intriguing potential for deep learning, but suffer from increased cost and sensitivity to the non-convexity of the loss surface as compared to gradient-based approaches. We introduce a coordinate descent method to train deep neural networks for classification tasks that exploits global convexity of the cross-entropy loss in the weights of the linear layer. Our hybrid Newton/Gradient Descent (NGD) method is consistent with the interpretation of hidden layers as providing an adaptive basis and the linear layer as providing an optimal fit of the basis to data. By alternating between a second-order method to find globally optimal parameters for the linear layer and gradient descent to train the hidden layers, we ensure an optimal fit of the adaptive basis to data throughout training. The size of the Hessian in the second-order step scales only with the number weights in the linear layer and not the depth and width of the hidden layers; furthermore, the approach is applicable to arbitrary hidden layer architecture. Previous work applying this adaptive basis perspective to regression problems demonstrated significant improvements in accuracy at reduced training cost, and this work can be viewed as an extension of this approach to classification problems. We first prove that the resulting Hessian matrix is symmetric semi-definite, and that the Newton step realizes a global minimizer. By studying classification of manufactured two-dimensional point cloud data, we demonstrate both an improvement in validation error and a striking qualitative difference in the basis functions encoded in the hidden layer when trained using NGD. Application to image classification benchmarks for both dense and convolutional architectures reveals improved training accuracy, suggesting gains of second-order methods over gradient descent. A Tensorflow implementation of the algorithm is available at github.com/rgp62/.
The application of deep learning toward discovery of data-driven models requires careful application of inductive biases to obtain a description of physics which is both accurate and robust. We present here a framework for discovering continuum models from high fidelity molecular simulation data. Our approach applies a neural network parameterization of governing physics in modal space, allowing a characterization of differential operators while providing structure which may be used to impose biases related to symmetry, isotropy, and conservation form. Here, we demonstrate the effectiveness of our framework for a variety of physics, including local and nonlocal diffusion processes and single and multiphase flows. For the flow physics we demonstrate this approach leads to a learned operator that generalizes to system characteristics not included in the training sets, such as variable particle sizes, densities, and concentration.
Select one or more publication years and click "Update search results".
This list has already been filtered by scope and author.
SELECTED PUBLICATION YEARS
MATCHING PUBLICATION YEARS
ALL PUBLICATION YEARS
No matches found.
Select a document type
Select one or more document types and click "Update search results".
This list has already been filtered by scope and author.
SELECTED DOCUMENT TYPES
MATCHING DOCUMENT TYPES
ALL DOCUMENT TYPES
No matches found.
Search for an author
Search for a Sandian author by first name, last name, or initials. Click on the author's name to add them as an option, and then click "Update search results".
This list has already been filtered by scope and author.
SELECTED AUTHORS
MATCHING AUTHORS
ALL AUTHORS
No matches found.
Search for a funding sponsor
Search for one or more funding sponsors and click "Update search results".
This list has already been filtered by scope and author.
SELECTED FUNDING SPONSORS
MATCHING FUNDING SPONSORS
ALL FUNDING SPONSORS
No matches found.
Search for a subject
Search for one or more subjects and click "Update search results".
This list has already been filtered by scope and author.
SELECTED SUBJECTS
MATCHING SUBJECTS
ALL SUBJECTS
No matches found.
Search for a keyword
Search for one or more keywords and click "Update search results".
This list has already been filtered by scope and author.