Publications

4 Results
Skip to search filters

Towards an integrated and efficient framework for leveraging reduced order models for multifidelity uncertainty quantification

AIAA Scitech 2020 Forum

Blonigan, Patrick J.; Geraci, Gianluca G.; Rizzi, Francesco N.; Eldred, Michael S.

Truly predictive numerical simulations can only be obtained by performing Uncertainty Quantification. However, many realistic engineering applications require extremely complex and computationally expensive high-fidelity numerical simulations for their accurate performance characterization. Very often the combination of complex physical models and extreme operative conditions can easily lead to hundreds of uncertain parameters that need to be propagated through high-fidelity codes. Under these circumstances, a single fidelity uncertainty quantification approach, i.e. a workflow that only uses high-fidelity simulations, is unfeasible due to its prohibitive overall computational cost. To overcome this difficulty, in recent years multifidelity strategies emerged and gained popularity. Their core idea is to combine simulations with varying levels of fidelity/accuracy in order to obtain estimators or surrogates that can yield the same accuracy of their single fidelity counterparts at a much lower computational cost. This goal is usually accomplished by defining a priori a sequence of discretization levels or physical modeling assumptions that can be used to decrease the complexity of a numerical model realization and thus its computational cost. Less attention has been dedicated to low-fidelity models that can be built directly from a small number of available high-fidelity simulations. In this work we focus our attention on reduced order models (ROMs). Our main goal in this work is to investigate the combination of multifidelity uncertainty quantification and ROMs in order to evaluate the possibility to obtain an efficient framework for propagating uncertainties through expensive numerical codes. We focus our attention on sampling-based multifidelity approaches, like the multifidelity control variate, and we consider several scenarios for a numerical test problem, namely the Kuramoto-Sivashinsky equation, for which the efficiency of the multifidelity-ROM estimator is compared to the standard (single-fidelity) Monte Carlo approach.

More Details
4 Results
4 Results

Current Filters

Clear all