Publications

13 Results
Skip to search filters

SAGE Intrusion Detection System: Sensitivity Analysis Guided Explainability for Machine Learning

Smith, Michael R.; Acquesta, Erin A.; Ames, Arlo L.; Carey, Alycia N.; Cueller, Christopher R.; Field, Richard V.; Maxfield, Trevor M.; Mitchell, Scott A.; Morris, Elizabeth S.; Moss, Blake C.; Nyre-Yu, Megan N.; Rushdi, Ahmad R.; Stites, Mallory C.; Smutz, Charles S.; Zhou, Xin Z.

This report details the results of a three-fold investigation of sensitivity analysis (SA) for machine learning (ML) explainability (MLE): (1) the mathematical assessment of the fidelity of an explanation with respect to a learned ML model, (2) quantifying the trustworthiness of a prediction, and (3) the impact of MLE on the efficiency of end-users through multiple users studies. We focused on the cybersecurity domain as the data is inherently non-intuitive. As ML is being using in an increasing number of domains, including domains where being wrong can elicit high consequences, MLE has been proposed as a means of generating trust in a learned ML models by end users. However, little analysis has been performed to determine if the explanations accurately represent the target model and they themselves should be trusted beyond subjective inspection. Current state-of-the-art MLE techniques only provide a list of important features based on heuristic measures and/or make certain assumptions about the data and the model which are not representative of the real-world data and models. Further, most are designed without considering the usefulness by an end-user in a broader context. To address these issues, we present a notion of explanation fidelity based on Shapley values from cooperative game theory. We find that all of the investigated MLE explainability methods produce explanations that are incongruent with the ML model that is being explained. This is because they make critical assumptions about feature independence and linear feature interactions for computational reasons. We also find that in deployed, explanations are rarely used due to a variety of reason including that there are several other tools which are trusted more than the explanations and there is little incentive to use the explanations. In the cases when the explanations are used, we found that there is the danger that explanations persuade the end users to wrongly accept false positives and false negatives. However, ML model developers and maintainers find the explanations more useful to help ensure that the ML model does not have obvious biases. In light of these findings, we suggest a number of future directions including developing MLE methods that directly model non-linear model interactions and including design principles that take into account the usefulness of explanations to the end user. We also augment explanations with a set of trustworthiness measures that measure geometric aspects of the data to determine if the model output should be trusted.

More Details

Crossing the Cleft: Communication Challenges Between Neuroscience and Artificial Intelligence

Frontiers in Computational Neuroscience

Chance, Frances S.; Aimone, James B.; Musuvathy, Srideep M.; Smith, Michael R.; Vineyard, Craig M.; Wang, Felix W.

Historically, neuroscience principles have heavily influenced artificial intelligence (AI), for example the influence of the perceptron model, essentially a simple model of a biological neuron, on artificial neural networks. More recently, notable recent AI advances, for example the growing popularity of reinforcement learning, often appear more aligned with cognitive neuroscience or psychology, focusing on function at a relatively abstract level. At the same time, neuroscience stands poised to enter a new era of large-scale high-resolution data and appears more focused on underlying neural mechanisms or architectures that can, at times, seem rather removed from functional descriptions. While this might seem to foretell a new generation of AI approaches arising from a deeper exploration of neuroscience specifically for AI, the most direct path for achieving this is unclear. Here we discuss cultural differences between the two fields, including divergent priorities that should be considered when leveraging modern-day neuroscience for AI. For example, the two fields feed two very different applications that at times require potentially conflicting perspectives. We highlight small but significant cultural shifts that we feel would greatly facilitate increased synergy between the two fields.

More Details

A spike-Timing neuromorphic architecture

2017 IEEE International Conference on Rebooting Computing, ICRC 2017 - Proceedings

Hill, Aaron J.; Donaldson, Jonathon W.; Rothganger, Fredrick R.; Vineyard, Craig M.; Follett, David R.; Follett, Pamela L.; Smith, Michael R.; Verzi, Stephen J.; Severa, William M.; Wang, Felix W.; Aimone, James B.; Naegle, John H.; James, Conrad D.

Unlike general purpose computer architectures that are comprised of complex processor cores and sequential computation, the brain is innately parallel and contains highly complex connections between computational units (neurons). Key to the architecture of the brain is a functionality enabled by the combined effect of spiking communication and sparse connectivity with unique variable efficacies and temporal latencies. Utilizing these neuroscience principles, we have developed the Spiking Temporal Processing Unit (STPU) architecture which is well-suited for areas such as pattern recognition and natural language processing. In this paper, we formally describe the STPU, implement the STPU on a field programmable gate array, and show measured performance data.

More Details

A novel digital neuromorphic architecture efficiently facilitating complex synaptic response functions applied to liquid state machines

Proceedings of the International Joint Conference on Neural Networks

Smith, Michael R.; Hill, Aaron J.; Carlson, Kristofor D.; Vineyard, Craig M.; Donaldson, Jonathon W.; Follett, David R.; Follett, Pamela L.; Naegle, John H.; James, Conrad D.; Aimone, James B.

Information in neural networks is represented as weighted connections, or synapses, between neurons. This poses a problem as the primary computational bottleneck for neural networks is the vector-matrix multiply when inputs are multiplied by the neural network weights. Conventional processing architectures are not well suited for simulating neural networks, often requiring large amounts of energy and time. Additionally, synapses in biological neural networks are not binary connections, but exhibit a nonlinear response function as neurotransmitters are emitted and diffuse between neurons. Inspired by neuroscience principles, we present a digital neuromorphic architecture, the Spiking Temporal Processing Unit (STPU), capable of modeling arbitrary complex synaptic response functions without requiring additional hardware components. We consider the paradigm of spiking neurons with temporally coded information as opposed to non-spiking rate coded neurons used in most neural networks. In this paradigm we examine liquid state machines applied to speech recognition and show how a liquid state machine with temporal dynamics maps onto the STPU - demonstrating the flexibility and efficiency of the STPU for instantiating neural algorithms.

More Details
13 Results
13 Results

Current Filters

Clear all