Publications

6 Results
Skip to search filters

Modeling attacker-defender interactions in information networks

Collins, Michael J.

The simplest conceptual model of cybersecurity implicitly views attackers and defenders as acting in isolation from one another: an attacker seeks to penetrate or disrupt a system that has been protected to a given level, while a defender attempts to thwart particular attacks. Such a model also views all non-malicious parties as having the same goal of preventing all attacks. But in fact, attackers and defenders are interacting parts of the same system, and different defenders have their own individual interests: defenders may be willing to accept some risk of successful attack if the cost of defense is too high. We have used game theory to develop models of how non-cooperative but non-malicious players in a network interact when there is a substantial cost associated with effective defensive measures. Although game theory has been applied in this area before, we have introduced some novel aspects of player behavior in our work, including: (1) A model of how players attempt to avoid the costs of defense and force others to assume these costs; (2) A model of how players interact when the cost of defending one node can be shared by other nodes; and (3) A model of the incentives for a defender to choose less expensive, but less effective, defensive actions.

More Details

Hybrid cryptography key management

Torgerson, Mark D.; Beaver, Cheryl L.; Collins, Michael J.; Draelos, Timothy J.; Gallup, Donald R.; Neumann, William D.; Torgerson, Mark D.

Wireless communication networks are highly resource-constrained; thus many security protocols which work in other settings may not be efficient enough for use in wireless environments. This report considers a variety of cryptographic techniques which enable secure, authenticated communication when resources such as processor speed, battery power, memory, and bandwidth are tightly limited.

More Details

Covering a set of points with a minimum number of turns

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Collins, Michael J.

Given a finite set of points in Euclidean space, we can ask what is the minimum number of times a piecewise-linear path must change direction in order to pass through all of them. We prove some new upper and lower bounds for a restricted version of this problem in which all motion is orthogonal to the coordinate axes. © Springer-Verlag Berlin Heidelberg 2003.

More Details

Experiments on Adaptive Techniques for Host-Based Intrusion Detection

Draelos, Timothy J.; Collins, Michael J.; Duggan, David P.; Thomas, Edward V.

This research explores four experiments of adaptive host-based intrusion detection (ID) techniques in an attempt to develop systems that can detect novel exploits. The technique considered to have the most potential is adaptive critic designs (ACDs) because of their utilization of reinforcement learning, which allows learning exploits that are difficult to pinpoint in sensor data. Preliminary results of ID using an ACD, an Elman recurrent neural network, and a statistical anomaly detection technique demonstrate an ability to learn to distinguish between clean and exploit data. We used the Solaris Basic Security Module (BSM) as a data source and performed considerable preprocessing on the raw data. A detection approach called generalized signature-based ID is recommended as a middle ground between signature-based ID, which has an inability to detect novel exploits, and anomaly detection, which detects too many events including events that are not exploits. The primary results of the ID experiments demonstrate the use of custom data for generalized signature-based intrusion detection and the ability of neural network-based systems to learn in this application environment.

More Details
6 Results
6 Results