Publications

17 Results
Skip to search filters

An introduction to developing GitLab/Jacamar runner analyst centric workflows at Sandia

Robinson, Allen C.; Swan, Matthew S.; Harvey, Evan C.; Klein, Brandon T.; Lawson, Gary L.; Milewicz, Reed M.; Pedretti, Kevin P.; Schmitz, Mark E.; Warnock, Scott A.

This document provides very basic background information and initial enabling guidance for computational analysts to develop and utilize GitOps practices within the Common Engineering Environment (CEE) and High Performance Computing (HPC) computational environment at Sandia National Laboratories through GitLab/Jacamar runner based workflows.

More Details

Progress in Modeling the 2019 Extended Magnetically Insulated Transmission Line (MITL) and Courtyard Environment Trial at HERMES-III

Cartwright, Keith C.; Pointon, Tim P.; Powell, Troy C.; Grabowski, Theodore C.; Shields, Sidney S.; Sirajuddin, David S.; Jensen, Daniel S.; Renk, Timothy J.; Cyr, Eric C.; Stafford, David S.; Swan, Matthew S.; Mitra, Sudeep M.; McDoniel, William M.; Moore, Christopher H.

This report documents the progress made in simulating the HERMES-III Magnetically Insulated Transmission Line (MITL) and courtyard with EMPIRE and ITS. This study focuses on the shots that were taken during the months of June and July of 2019 performed with the new MITL extension. There were a few shots where there was dose mapping of the courtyard, 11132, 11133, 11134, 11135, 11136, and 11146. This report focuses on these shots because there was full data return from the MITL electrical diagnostics and the radiation dose sensors in the courtyard. The comparison starts with improving the processing of the incoming voltage into the EMPIRE simulation from the experiment. The currents are then compared at several location along the MITL. The simulation results of the electrons impacting the anode are shown. The electron impact energy and angle is then handed off to ITS which calculates the dose on the faceplate and locations in the courtyard and they are compared to experimental measurements. ITS also calculates the photons and electrons that are injected into the courtyard, these quantities are then used by EMPIRE to calculated the photon and electron transport in the courtyard. The details for the algorithms used to perform the courtyard simulations are presented as well as qualitative comparisons of the electric field, magnetic field, and the conductivity in the courtyard. Because of the computational burden of these calculations the pressure was reduce in the courtyard to reduce the computational load. The computation performance is presented along with suggestion on how to improve both the computational performance as well as the algorithmic performance. Some of the algorithmic changed would reduce the accuracy of the models and detail comparison of these changes are left for a future study. As well as, list of code improvements there is also a list of suggested experimental improvements to improve the quality of the data return.

More Details

Integrated System and Application Continuous Performance Monitoring and Analysis Capability

Aaziz, Omar R.; Allan, Benjamin A.; Brandt, James M.; Cook, Jeanine C.; Devine, Karen D.; Elliott, James E.; Gentile, Ann C.; Hammond, Simon D.; Kelley, Brian M.; Lopatina, Lena L.; Moore, Stan G.; Olivier, Stephen L.; Pedretti, Kevin P.; Poliakoff, David Z.; Pawlowski, Roger P.; Regier, Phillip A.; Schmitz, Mark E.; Schwaller, Benjamin S.; Surjadidjaja, Vanessa S.; Swan, Matthew S.; Tucker, Nick T.; Tucker, Tom T.; Vaughan, Courtenay T.; Walton, Sara P.

Scientific applications run on high-performance computing (HPC) systems are critical for many national security missions within Sandia and the NNSA complex. However, these applications often face performance degradation and even failures that are challenging to diagnose. To provide unprecedented insight into these issues, the HPC Development, HPC Systems, Computational Science, and Plasma Theory & Simulation departments at Sandia crafted and completed their FY21 ASC Level 2 milestone entitled "Integrated System and Application Continuous Performance Monitoring and Analysis Capability." The milestone created a novel integrated HPC system and application monitoring and analysis capability by extending Sandia's Kokkos application portability framework, Lightweight Distributed Metric Service (LDMS) monitoring tool, and scalable storage, analysis, and visualization pipeline. The extensions to Kokkos and LDMS enable collection and storage of application data during run time, as it is generated, with negligible overhead. This data is combined with HPC system data within the extended analysis pipeline to present relevant visualizations of derived system and application metrics that can be viewed at run time or post run. This new capability was evaluated using several week-long, 290-node runs of Sandia's ElectroMagnetic Plasma In Realistic Environments ( EMPIRE ) modeling and design tool and resulted in 1TB of application data and 50TB of system data. EMPIRE developers remarked this capability was incredibly helpful for quickly assessing application health and performance alongside system state. In short, this milestone work built the foundation for expansive HPC system and application data collection, storage, analysis, visualization, and feedback framework that will increase total scientific output of Sandia's HPC users.

More Details

Integrated System and Application Continuous Performance Monitoring and Analysis Capability

Brandt, James M.; Cook, Jeanine C.; Aaziz, Omar R.; Allan, Benjamin A.; Devine, Karen D.; Elliott, James J.; Gentile, Ann C.; Hammond, Simon D.; Kelley, Brian M.; Lopatina, Lena L.; Moore, Stan G.; Olivier, Stephen L.; Pedretti, Kevin P.; Poliakoff, David Z.; Pawlowski, Roger P.; Regier, Phillip A.; Schmitz, Mark E.; Schwaller, Benjamin S.; Surjadidjaja, Vanessa S.; Swan, Matthew S.; Tucker, Tom T.; Tucker, Nick T.; Vaughan, Courtenay T.; Walton, Sara P.

Abstract not provided.

Towards Predictive Plasma Science and Engineering through Revolutionary Multi-Scale Algorithms and Models (Final Report)

Laity, George R.; Robinson, Allen C.; Cuneo, M.E.; Alam, Mary K.; Beckwith, Kristian B.; Bennett, Nichelle L.; Bettencourt, Matthew T.; Bond, Stephen D.; Cochrane, Kyle C.; Criscenti, Louise C.; Cyr, Eric C.; De Zetter, Karen J.; Drake, Richard R.; Evstatiev, Evstati G.; Fierro, Andrew S.; Gardiner, Thomas A.; Glines, Forrest W.; Goeke, Ronald S.; Hamlin, Nathaniel D.; Hooper, Russell H.; Koski, Jason K.; Lane, James M.; Larson, Steven R.; Leung, Kevin L.; McGregor, Duncan A.; Miller, Philip R.; Miller, Sean M.; Ossareh, Susan J.; Phillips, Edward G.; Simpson, Sean S.; Sirajuddin, David S.; Smith, Thomas M.; Swan, Matthew S.; Thompson, Aidan P.; Tranchida, Julien G.; Bortz-Johnson, Asa J.; Welch, Dale R.; Russell, Alex M.; Watson, Eric D.; Rose, David V.; McBride, Ryan D.

This report describes the high-level accomplishments from the Plasma Science and Engineering Grand Challenge LDRD at Sandia National Laboratories. The Laboratory has a need to demonstrate predictive capabilities to model plasma phenomena in order to rapidly accelerate engineering development in several mission areas. The purpose of this Grand Challenge LDRD was to advance the fundamental models, methods, and algorithms along with supporting electrode science foundation to enable a revolutionary shift towards predictive plasma engineering design principles. This project integrated the SNL knowledge base in computer science, plasma physics, materials science, applied mathematics, and relevant application engineering to establish new cross-laboratory collaborations on these topics. As an initial exemplar, this project focused efforts on improving multi-scale modeling capabilities that are utilized to predict the electrical power delivery on large-scale pulsed power accelerators. Specifically, this LDRD was structured into three primary research thrusts that, when integrated, enable complex simulations of these devices: (1) the exploration of multi-scale models describing the desorption of contaminants from pulsed power electrodes, (2) the development of improved algorithms and code technologies to treat the multi-physics phenomena required to predict device performance, and (3) the creation of a rigorous verification and validation infrastructure to evaluate the codes and models across a range of challenge problems. These components were integrated into initial demonstrations of the largest simulations of multi-level vacuum power flow completed to-date, executed on the leading HPC computing machines available in the NNSA complex today. These preliminary studies indicate relevant pulsed power engineering design simulations can now be completed in (of order) several days, a significant improvement over pre-LDRD levels of performance.

More Details

ASC ATDM Level 2 Milestone #6358: Assess Status of Next Generation Components and Physics Models in EMPIRE

Bettencourt, Matthew T.; Kramer, Richard M.; Cartwright, Keith C.; Phillips, Edward G.; Ober, Curtis C.; Pawlowski, Roger P.; Swan, Matthew S.; Kalashnikova, Irina; Phipps, Eric T.; Conde, Sidafa C.; Cyr, Eric C.; Ulmer, Craig D.; Kordenbrock, Todd H.; Levy, Scott L.; Templet, Gary J.; Hu, Jonathan J.; Lin, Paul L.; Glusa, Christian A.; Siefert, Christopher S.; Glass, Micheal W.

This report documents the outcome from the ASC ATDM Level 2 Milestone 6358: Assess Status of Next Generation Components and Physics Models in EMPIRE. This Milestone is an assessment of the EMPIRE (ElectroMagnetic Plasma In Realistic Environments) application and three software components. The assessment focuses on the electromagnetic and electrostatic particle-in-cell solu- tions for EMPIRE and its associated solver, time integration, and checkpoint-restart components. This information provides a clear understanding of the current status of the EMPIRE application and will help to guide future work in FY19 in order to ready the application for the ASC ATDM L 1 Milestone in FY20. It is clear from this assessment that performance of the linear solver will have to be a focus in FY19.

More Details

Development and deployment of constitutive softening routines in Eulerian hydrocodes

Dewers, Thomas D.; Swan, Matthew S.

The state of the art in failure modeling enables assessment of crack nucleation, propagation, and progression to fragmentation due to high velocity impact. Vulnerability assessments suggest a need to track material behavior through failure, to the point of fragmentation and beyond. This eld of research is particularly challenging for structures made of porous quasi-brittle materials, such as ceramics used in modern armor systems, due to the complex material response when loading exceeds the quasi-brittle material's elastic limit. Further complications arise when incorporating the quasi-brittle material response in multi-material Eulerian hydrocode simulations. In this report, recent e orts in coupling a ceramic materials response in the post-failure regime with an Eulerian hydro code are described. Material behavior is modeled by the Kayenta material model [2] and Alegra as the host nite element code [14]. Kayenta, a three invariant phenomenological plasticity model originally developed for modeling the stress response of geologic materials, has in recent years been used with some success in the modeling of ceramic and other quasi-brittle materials to high velocity impact. Due to the granular nature of ceramic materials, Kayenta allows for signi cant pressures to develop due to dilatant plastic ow, even in shear dominated loading where traditional equations of state predict little or no pressure response. When a material's ability to carry further load is compromised, Kayenta allows the material's strength and sti ness to progressively degrade through the evolution of damage to the point of material failure. As material dilatation and damage progress, accommodations are made within Alegra to treat in a consistent manner the evolving state.

More Details
17 Results
17 Results

Current Filters

Clear all