Neural machine learning methods, such as deep neural networks (DNN), have achieved remarkable success in a number of complex data processing tasks. These methods have arguably had their strongest impact on tasks such as image and audio processing - data processing domains in which humans have long held clear advantages over conventional algorithms. In contrast to biological neural systems, which are capable of learning continuously, deep artificial networks have a limited ability for incorporating new information in an already trained network. As a result, methods for continuous learning are potentially highly impactful in enabling the application of deep networks to dynamic data sets. Here, inspired by the process of adult neurogenesis in the hippocampus, we explore the potential for adding new neurons to deep layers of artificial neural networks in order to facilitate their acquisition of novel information while preserving previously trained data representations. Our results on the MNIST handwritten digit dataset and the NIST SD 19 dataset, which includes lower and upper case letters and digits, demonstrate that neurogenesis is well suited for addressing the stability-plasticity dilemma that has long challenged adaptive machine learning algorithms.
Information in neural networks is represented as weighted connections, or synapses, between neurons. This poses a problem as the primary computational bottleneck for neural networks is the vector-matrix multiply when inputs are multiplied by the neural network weights. Conventional processing architectures are not well suited for simulating neural networks, often requiring large amounts of energy and time. Additionally, synapses in biological neural networks are not binary connections, but exhibit a nonlinear response function as neurotransmitters are emitted and diffuse between neurons. Inspired by neuroscience principles, we present a digital neuromorphic architecture, the Spiking Temporal Processing Unit (STPU), capable of modeling arbitrary complex synaptic response functions without requiring additional hardware components. We consider the paradigm of spiking neurons with temporally coded information as opposed to non-spiking rate coded neurons used in most neural networks. In this paradigm we examine liquid state machines applied to speech recognition and show how a liquid state machine with temporal dynamics maps onto the STPU - demonstrating the flexibility and efficiency of the STPU for instantiating neural algorithms.
The continuous integration of young neurons into the adult brain represents a novel form of structural plasticity and has inspired the creation of numerous computational models to understand the functional role of adult neurogenesis. These computational models consist of abstract models that focus on the utility of new neurons in simple neural networks and biologically based models constrained by anatomical data that explore the role of new neurons in specific neural circuits such as the hippocampus. Simulation results from both classes of models have suggested a number of theoretical roles for neurogenesis such as increasing the capacity to learn novel information, promoting temporal context encoding, and influencing pattern separation. In this review, we discuss strategies and findings of past computational modeling efforts, current challenges and limitations, and new computational approaches pertinent to modeling adult neurogenesis.
Biological neural networks continue to inspire new developments in algorithms and microelectronic hardware to solve challenging data processing and classification problems. Here, we survey the history of neural-inspired and neuromorphic computing in order to examine the complex and intertwined trajectories of the mathematical theory and hardware developed in this field. Early research focused on adapting existing hardware to emulate the pattern recognition capabilities of living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and other professions were crucial to maturing the field from narrowly-tailored demonstrations to more generalizable systems capable of addressing difficult problem classes such as object detection and speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as hierarchical structure, temporal integration, and robustness to error have been developed, and some of these approaches are achieving world-leading performance on particular data classification tasks. In addition, novel microelectronic hardware is being developed to perform logic and to serve as memory in neuromorphic computing systems with optimized system integration and improved energy efficiency. Key to such advancements was the incorporation of new discoveries in neuroscience research, the transition away from strict structural replication and towards the functional replication of neural systems, and the use of mathematical theory frameworks to guide algorithm and hardware developments.
For decades, neural networks have shown promise for next-generation computing, and recent breakthroughs in machine learning techniques, such as deep neural networks, have provided state-of-the-art solutions for inference problems. However, these networks require thousands of training processes and are poorly suited for the precise computations required in scientific or similar arenas. The emergence of dedicated spiking neuromorphic hardware creates a powerful computational paradigm which can be leveraged towards these exact scientific or otherwise objective computing tasks. We forego any learning process and instead construct the network graph by hand. In turn, the networks produce guaranteed success often with easily computable complexity. We demonstrate a number of algorithms exemplifying concepts central to spiking networks including spike timing and synaptic delay. We also discuss the application of cross-correlation particle image velocimetry and provide two spiking algorithms; one uses time-division multiplexing, and the other runs in constant time.
Select one or more publication years and click "Update search results".
This list has already been filtered by scope and author.
SELECTED PUBLICATION YEARS
MATCHING PUBLICATION YEARS
ALL PUBLICATION YEARS
No matches found.
Select a document type
Select one or more document types and click "Update search results".
This list has already been filtered by scope and author.
SELECTED DOCUMENT TYPES
MATCHING DOCUMENT TYPES
ALL DOCUMENT TYPES
No matches found.
Search for an author
Search for a Sandian author by first name, last name, or initials. Click on the author's name to add them as an option, and then click "Update search results".
This list has already been filtered by scope and author.
SELECTED AUTHORS
MATCHING AUTHORS
ALL AUTHORS
No matches found.
Search for a funding sponsor
Search for one or more funding sponsors and click "Update search results".
This list has already been filtered by scope and author.
SELECTED FUNDING SPONSORS
MATCHING FUNDING SPONSORS
ALL FUNDING SPONSORS
No matches found.
Search for a research partner
Search for one or more research partners and click "Update search results".
This list has already been filtered by scope and author.
SELECTED RESEARCH PARTNERS
MATCHING RESEARCH PARTNERS
ALL RESEARCH PARTNERS
No matches found.
Search for a subject
Search for one or more subjects and click "Update search results".
This list has already been filtered by scope and author.
SELECTED SUBJECTS
MATCHING SUBJECTS
ALL SUBJECTS
No matches found.
Search for a keyword
Search for one or more keywords and click "Update search results".
This list has already been filtered by scope and author.