Publications

9 Results
Skip to search filters

Xyce parallel electronic simulator users' guide, Version 6.0.1

Keiter, Eric R.; Warrender, Christina E.; Mei, Ting M.; Russo, Thomas V.; Schiek, Richard S.; Thornquist, Heidi K.; Verley, Jason V.; Coffey, Todd S.; Pawlowski, Roger P.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.

More Details

Xyce parallel electronic simulator reference guide, Version 6.0.1

Keiter, Eric R.; Mei, Ting M.; Russo, Thomas V.; Pawlowski, Roger P.; Schiek, Richard S.; Coffey, Todd S.; Thornquist, Heidi K.; Verley, Jason V.; Warrender, Christina E.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users Guide [1] . The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users Guide [1] .

More Details

Xyce parallel electronic simulator users guide, version 6.0

Russo, Thomas V.; Mei, Ting M.; Keiter, Eric R.; Schiek, Richard S.; Thornquist, Heidi K.; Verley, Jason V.; Coffey, Todd S.; Pawlowski, Roger P.; Warrender, Christina E.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.

More Details

Xyce parallel electronic simulator reference guide, version 6.0

Keiter, Eric R.; Mei, Ting M.; Russo, Thomas V.; Pawlowski, Roger P.; Schiek, Richard S.; Coffey, Todd S.; Thornquist, Heidi K.; Verley, Jason V.; Warrender, Christina E.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users Guide [1] . The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users Guide [1] .

More Details
9 Results
9 Results

Current Filters

Clear all