Publications

4 Results
Skip to search filters

Predictive Data-driven Platform for Subsurface Energy Production

Yoon, Hongkyu Y.; Verzi, Stephen J.; Cauthen, Katherine R.; Musuvathy, Srideep M.; Melander, Darryl J.; Norland, Kyle N.; Morales, Adriana M.; Lee, Jonghyun H.; Sun, Alexander Y.

Subsurface energy activities such as unconventional resource recovery, enhanced geothermal energy systems, and geologic carbon storage require fast and reliable methods to account for complex, multiphysical processes in heterogeneous fractured and porous media. Although reservoir simulation is considered the industry standard for simulating these subsurface systems with injection and/or extraction operations, reservoir simulation requires spatio-temporal “Big Data” into the simulation model, which is typically a major challenge during model development and computational phase. In this work, we developed and applied various deep neural network-based approaches to (1) process multiscale image segmentation, (2) generate ensemble members of drainage networks, flow channels, and porous media using deep convolutional generative adversarial network, (3) construct multiple hybrid neural networks such as convolutional LSTM and convolutional neural network-LSTM to develop fast and accurate reduced order models for shale gas extraction, and (4) physics-informed neural network and deep Q-learning for flow and energy production. We hypothesized that physicsbased machine learning/deep learning can overcome the shortcomings of traditional machine learning methods where data-driven models have faltered beyond the data and physical conditions used for training and validation. We improved and developed novel approaches to demonstrate that physics-based ML can allow us to incorporate physical constraints (e.g., scientific domain knowledge) into ML framework. Outcomes of this project will be readily applicable for many energy and national security problems that are particularly defined by multiscale features and network systems.

More Details

Computational thermal, chemical, fluid, and solid mechanics for geosystems management

Martinez, Mario J.; Red-Horse, John R.; Carnes, Brian C.; Mesh, Mikhail M.; Field, Richard V.; Davison, Scott M.; Yoon, Hongkyu Y.; Bishop, Joseph E.; Newell, Pania N.; Notz, Patrick N.; Turner, Daniel Z.; Subia, Samuel R.; Hopkins, Polly L.; Moffat, Harry K.; Jove Colon, Carlos F.; Dewers, Thomas D.; Klise, Katherine A.

This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

More Details
4 Results
4 Results

Current Filters

Clear all