Publications

Results 1–25 of 187
Skip to search filters

Progress in Modeling the 2019 Extended Magnetically Insulated Transmission Line (MITL) and Courtyard Environment Trial at HERMES-III

Cartwright, Keith C.; Pointon, Tim P.; Powell, Troy C.; Grabowski, Theodore C.; Shields, Sidney S.; Sirajuddin, David S.; Jensen, Daniel S.; Renk, Timothy J.; Cyr, Eric C.; Stafford, David S.; Swan, Matthew S.; Mitra, Sudeep M.; McDoniel, William M.; Moore, Christopher H.

This report documents the progress made in simulating the HERMES-III Magnetically Insulated Transmission Line (MITL) and courtyard with EMPIRE and ITS. This study focuses on the shots that were taken during the months of June and July of 2019 performed with the new MITL extension. There were a few shots where there was dose mapping of the courtyard, 11132, 11133, 11134, 11135, 11136, and 11146. This report focuses on these shots because there was full data return from the MITL electrical diagnostics and the radiation dose sensors in the courtyard. The comparison starts with improving the processing of the incoming voltage into the EMPIRE simulation from the experiment. The currents are then compared at several location along the MITL. The simulation results of the electrons impacting the anode are shown. The electron impact energy and angle is then handed off to ITS which calculates the dose on the faceplate and locations in the courtyard and they are compared to experimental measurements. ITS also calculates the photons and electrons that are injected into the courtyard, these quantities are then used by EMPIRE to calculated the photon and electron transport in the courtyard. The details for the algorithms used to perform the courtyard simulations are presented as well as qualitative comparisons of the electric field, magnetic field, and the conductivity in the courtyard. Because of the computational burden of these calculations the pressure was reduce in the courtyard to reduce the computational load. The computation performance is presented along with suggestion on how to improve both the computational performance as well as the algorithmic performance. Some of the algorithmic changed would reduce the accuracy of the models and detail comparison of these changes are left for a future study. As well as, list of code improvements there is also a list of suggested experimental improvements to improve the quality of the data return.

More Details

Fluid-Kinetic Coupling: Advanced Discretizations for Simulations on Emerging Heterogeneous Architectures (LDRD FY20-0643)

Roberts, Nathan V.; Bond, Stephen D.; Miller, Sean A.; Cyr, Eric C.

Plasma physics simulations are vital for a host of Sandia mission concerns, for fundamental science, and for clean energy in the form of fusion power. Sandia's most mature plasma physics simulation capabilities come in the form of particle-in-cell (PIC) models and magnetohydrodynamics (MHD) models. MHD models for a plasma work well in denser plasma regimes when there is enough material that the plasma approximates a fluid. PIC models, on the other hand, work well in lower-density regimes, in which there is not too much to simulate; error in PIC scales as the square root of the number of particles, making high-accuracy simulations expensive. Real-world applications, however, almost always involve a transition region between the high-density regimes where MHD is appropriate, and the low-density regimes for PIC. In such a transition region, a direct discretization of Vlasov is appropriate. Such discretizations come with their own computational costs, however; the phase-space mesh for Vlasov can involve up to six dimensions (seven if time is included), and to apply appropriate homogeneous boundary conditions in velocity space requires meshing a substantial padding region to ensure that the distribution remains sufficiently close to zero at the velocity boundaries. Moreover, for collisional plasmas, the right-hand side of the Vlasov equation is a collision operator, which is non-local in velocity space, and which may dominate the cost of the Vlasov solver. The present LDRD project endeavors to develop modern, foundational tools for the development of continuum-kinetic Vlasov solvers, using the discontinuous Petrov-Galerkin (DPG) methodology, for discretization of Vlasov, and machine-learning (ML) models to enable efficient evaluation of collision operators. DPG affords several key advantages. First, it has a built-in, robust error indicator, allowing us to adapt the mesh in a very natural way, enabling a coarse velocity-space mesh near the homogeneous boundaries, and a fine mesh where the solution has fine features. Second, it is an inherently high-order, high-intensity method, requiring extra local computations to determine so-called optimal test functions, which makes it particularly suited to modern hardware in which floating-point throughput is increasing at a faster rate than memory bandwidth. Finally, DPG is a residual-minimizing method, which enables high-accuracy computation: in typical cases, the method delivers something very close to the $L^2$ projection of the exact solution. Meanwhile, the ML-based collision model we adopt affords a cost structure that scales as the square root of a standard direct evaluation. Moreover, we design our model to conserve mass, momentum, and energy by construction, and our approach to training is highly flexible, in that it can incorporate not only synthetic data from direct-simulation Monte Carlo (DSMC) codes, but also experimental data. We have developed two DPG formulations for Vlasov-Poisson: a time-marching, backward-Euler discretization and a space-time discretization. We have conducted a number of numerical experiments to verify the approach in a 1D1V setting. In this report, we detail these formulations and experiments. We also summarize some new theoretical results developed as part of this project (published as papers previously): some new analysis of DPG for the convection-reaction problem (of which the Vlasov equation is an instance), a new exponential integrator for DPG, and some numerical exploration of various DPG-based time-marching approaches to the heat equation. As part of this work, we have contributed extensively to the Camellia open-source library; we also describe the new capabilities and their usage. We have also developed a well-documented methodology for single-species collision operators, which we applied to argon and demonstrated with numerical experiments. We summarize those results here, as well as describing at a high level a design extending the methodology to multi-species operators. We have released a new open-source library, MLC, under a BSD license; we include a summary of its capabilities as well.

More Details

Neural-network based collision operators for the Boltzmann equation

Journal of Computational Physics

Roberts, Nathan V.; Bond, Stephen D.; Cyr, Eric C.; Miller, Sean T.

Kinetic gas dynamics in rarefied and moderate-density regimes have complex behavior associated with collisional processes. These processes are generally defined by convolution integrals over a high-dimensional space (as in the Boltzmann operator), or require evaluating complex auxiliary variables (as in Rosenbluth potentials in Fokker-Planck operators) that are challenging to implement and computationally expensive to evaluate. In this work, we develop a data-driven neural network model that augments a simple and inexpensive BGK collision operator with a machine-learned correction term, which improves the fidelity of the simple operator with a small overhead to overall runtime. The composite collision operator has a tunable fidelity and, in this work, is trained using and tested against a direct-simulation Monte-Carlo (DSMC) collision operator.

More Details

Numerical simulation of a relativistic magnetron using a fluid electron model

Physics of Plasmas

Roberds, Nicholas R.; Cartwright, Keith C.; Sandoval, Andrew J.; Beckwith, Kristian B.; Cyr, Eric C.; Glines, Forrest W.

An approach to numerically modeling relativistic magnetrons, in which the electrons are represented with a relativistic fluid, is described. A principal effect in the operation of a magnetron is space-charge-limited (SCL) emission of electrons from the cathode. We have developed an approximate SCL emission boundary condition for the fluid electron model. This boundary condition prescribes the flux of electrons as a function of the normal component of the electric field on the boundary. We show the results of a benchmarking activity that applies the fluid SCL boundary condition to the one-dimensional Child–Langmuir diode problem and a canonical two-dimensional diode problem. Simulation results for a two-dimensional A6 magnetron are then presented. Computed bunching of the electron cloud occurs and coincides with significant microwave power generation. Numerical convergence of the solution is considered. Sharp gradients in the solution quantities at the diocotron resonance, spanning an interval of three to four grid cells in the most well-resolved case, are present and likely affect convergence.

More Details

Thermodynamically consistent physics-informed neural networks for hyperbolic systems

Journal of Computational Physics

Patel, Ravi G.; Manickam, Indu; Trask, Nathaniel A.; Wood, Mitchell A.; Lee, Myoungkyu N.; Tomas, Ignacio T.; Cyr, Eric C.

Physics-informed neural network architectures have emerged as a powerful tool for developing flexible PDE solvers that easily assimilate data. When applied to problems in shock physics however, these approaches face challenges related to the collocation-based PDE discretization underpinning them. By instead adopting a least squares space-time control volume scheme, we obtain a scheme which more naturally handles: regularity requirements, imposition of boundary conditions, entropy compatibility, and conservation, substantially reducing requisite hyperparameters in the process. Additionally, connections to classical finite volume methods allows application of inductive biases toward entropy solutions and total variation diminishing properties. For inverse problems in shock hydrodynamics, we propose inductive biases for discovering thermodynamically consistent equations of state that guarantee hyperbolicity. This framework therefore provides a means of discovering continuum shock models from molecular simulations of rarefied gases and metals. The output of the learning process provides a data-driven equation of state which may be incorporated into traditional shock hydrodynamics codes.

More Details

Learning an Algebriac Multrigrid Interpolation Operator Using a Modified GraphNet Architecture

Moore, Nicholas S.; Cyr, Eric C.; Siefert, Christopher S.

This work, building on previous efforts, develops a suite of new graph neural network machine learning architectures that generate data-driven prolongators for use in Algebraic Multigrid (AMG). Algebraic Multigrid is a powerful and common technique for solving large, sparse linear systems. Its effectiveness is problem dependent and heavily depends on the choice of the prolongation operator, which interpolates the coarse mesh results onto a finer mesh. Previous work has used recent developments in graph neural networks to learn a prolongation operator from a given coefficient matrix. In this paper, we expand on previous work by exploring architectural enhancements of graph neural networks. A new method for generating a training set is developed which more closely aligns to the test set. Asymptotic error reduction factors are compared on a test suite of 3-dimensional Poisson problems with varying degrees of element stretching. Results show modest improvements in asymptotic error factor over both commonly chosen baselines and learning methods from previous work.

More Details

A block coordinate descent optimizer for classification problems exploiting convexity

CEUR Workshop Proceedings

Patel, Ravi G.; Trask, Nathaniel A.; Gulian, Mamikon G.; Cyr, Eric C.

Second-order optimizers hold intriguing potential for deep learning, but suffer from increased cost and sensitivity to the non-convexity of the loss surface as compared to gradient-based approaches. We introduce a coordinate descent method to train deep neural networks for classification tasks that exploits global convexity of the cross-entropy loss in the weights of the linear layer. Our hybrid Newton/Gradient Descent (NGD) method is consistent with the interpretation of hidden layers as providing an adaptive basis and the linear layer as providing an optimal fit of the basis to data. By alternating between a second-order method to find globally optimal parameters for the linear layer and gradient descent to train the hidden layers, we ensure an optimal fit of the adaptive basis to data throughout training. The size of the Hessian in the second-order step scales only with the number weights in the linear layer and not the depth and width of the hidden layers; furthermore, the approach is applicable to arbitrary hidden layer architecture. Previous work applying this adaptive basis perspective to regression problems demonstrated significant improvements in accuracy at reduced training cost, and this work can be viewed as an extension of this approach to classification problems. We first prove that the resulting Hessian matrix is symmetric semi-definite, and that the Newton step realizes a global minimizer. By studying classification of manufactured two-dimensional point cloud data, we demonstrate both an improvement in validation error and a striking qualitative difference in the basis functions encoded in the hidden layer when trained using NGD. Application to image classification benchmarks for both dense and convolutional architectures reveals improved training accuracy, suggesting gains of second-order methods over gradient descent. A Tensorflow implementation of the algorithm is available at github.com/rgp62/.

More Details

Towards Predictive Plasma Science and Engineering through Revolutionary Multi-Scale Algorithms and Models (Final Report)

Laity, George R.; Robinson, Allen C.; Cuneo, M.E.; Alam, Mary K.; Beckwith, Kristian B.; Bennett, Nichelle L.; Bettencourt, Matthew T.; Bond, Stephen D.; Cochrane, Kyle C.; Criscenti, Louise C.; Cyr, Eric C.; De Zetter, Karen J.; Drake, Richard R.; Evstatiev, Evstati G.; Fierro, Andrew S.; Gardiner, Thomas A.; Glines, Forrest W.; Goeke, Ronald S.; Hamlin, Nathaniel D.; Hooper, Russell H.; Koski, Jason K.; Lane, James M.; Larson, Steven R.; Leung, Kevin L.; McGregor, Duncan A.; Miller, Philip R.; Miller, Sean M.; Ossareh, Susan J.; Phillips, Edward G.; Simpson, Sean S.; Sirajuddin, David S.; Smith, Thomas M.; Swan, Matthew S.; Thompson, Aidan P.; Tranchida, Julien G.; Bortz-Johnson, Asa J.; Welch, Dale R.; Russell, Alex M.; Watson, Eric D.; Rose, David V.; McBride, Ryan D.

This report describes the high-level accomplishments from the Plasma Science and Engineering Grand Challenge LDRD at Sandia National Laboratories. The Laboratory has a need to demonstrate predictive capabilities to model plasma phenomena in order to rapidly accelerate engineering development in several mission areas. The purpose of this Grand Challenge LDRD was to advance the fundamental models, methods, and algorithms along with supporting electrode science foundation to enable a revolutionary shift towards predictive plasma engineering design principles. This project integrated the SNL knowledge base in computer science, plasma physics, materials science, applied mathematics, and relevant application engineering to establish new cross-laboratory collaborations on these topics. As an initial exemplar, this project focused efforts on improving multi-scale modeling capabilities that are utilized to predict the electrical power delivery on large-scale pulsed power accelerators. Specifically, this LDRD was structured into three primary research thrusts that, when integrated, enable complex simulations of these devices: (1) the exploration of multi-scale models describing the desorption of contaminants from pulsed power electrodes, (2) the development of improved algorithms and code technologies to treat the multi-physics phenomena required to predict device performance, and (3) the creation of a rigorous verification and validation infrastructure to evaluate the codes and models across a range of challenge problems. These components were integrated into initial demonstrations of the largest simulations of multi-level vacuum power flow completed to-date, executed on the leading HPC computing machines available in the NNSA complex today. These preliminary studies indicate relevant pulsed power engineering design simulations can now be completed in (of order) several days, a significant improvement over pre-LDRD levels of performance.

More Details

EMPIRE-PIC: A performance portable unstructured particle-in-cell code

Communications in Computational Physics

Bettencourt, Matthew T.; Brown, Dominic A.S.; Cartwright, Keith L.; Cyr, Eric C.; Glusa, Christian A.; Lin, Paul T.; Moore, Stan G.; McGregor, Duncan A.O.; Pawlowski, Roger P.; Phillips, Edward G.; Roberts, Nathan V.; Wright, Steven A.; Maheswaran, Satheesh; Jones, John P.; Jarvis, Stephen A.

In this paper we introduce EMPIRE-PIC, a finite element method particle-in-cell (FEM-PIC) application developed at Sandia National Laboratories. The code has been developed in C++ using the Trilinos library and the Kokkos Performance Portability Framework to enable running on multiple modern compute architectures while only requiring maintenance of a single codebase. EMPIRE-PIC is capable of solving both electrostatic and electromagnetic problems in two- and three-dimensions to second-order accuracy in space and time. In this paper we validate the code against three benchmark problems - a simple electron orbit, an electrostatic Langmuir wave, and a transverse electromagnetic wave propagating through a plasma. We demonstrate the performance of EMPIRE-PIC on four different architectures: Intel Haswell CPUs, Intel's Xeon Phi Knights Landing, ARM Thunder-X2 CPUs, and NVIDIA Tesla V100 GPUs attached to IBM POWER9 processors. This analysis demonstrates scalability of the code up to more than two thousand GPUs, and greater than one hundred thousand CPUs.

More Details

A physics-informed operator regression framework for extracting data-driven continuum models

Computer Methods in Applied Mechanics and Engineering

Patel, Ravi G.; Trask, Nathaniel A.; Wood, Mitchell A.; Cyr, Eric C.

The application of deep learning toward discovery of data-driven models requires careful application of inductive biases to obtain a description of physics which is both accurate and robust. We present here a framework for discovering continuum models from high fidelity molecular simulation data. Our approach applies a neural network parameterization of governing physics in modal space, allowing a characterization of differential operators while providing structure which may be used to impose biases related to symmetry, isotropy, and conservation form. Here, we demonstrate the effectiveness of our framework for a variety of physics, including local and nonlocal diffusion processes and single and multiphase flows. For the flow physics we demonstrate this approach leads to a learned operator that generalizes to system characteristics not included in the training sets, such as variable particle sizes, densities, and concentration.

More Details
Results 1–25 of 187
Results 1–25 of 187

Current Filters

Clear all