Publications

8 Results
Skip to search filters

Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016

Schoenwald, David A.; Richardson, Bryan T.; Riehm, Andrew C.; Wolfenbarger, Paul W.; Adams, Brian M.; Reno, Matthew J.; Hansen, Clifford H.; Oldfield, Ron A.; Stamp, Jason E.; Stein, Joshua S.; Hoekstra, Robert J.; Munoz-Ramos, Karina M.; McLendon, William C.; Russo, Thomas V.; Phillips, Laurence R.

Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

More Details

Data mining for ontology development

Davidson, George S.; Schoenwald, David A.

A multi-laboratory ontology construction effort during the summer and fall of 2009 prototyped an ontology for counterfeit semiconductor manufacturing. This effort included an ontology development team and an ontology validation methods team. Here the third team of the Ontology Project, the Data Analysis (DA) team reports on their approaches, the tools they used, and results for mining literature for terminology pertinent to counterfeit semiconductor manufacturing. A discussion of the value of ontology-based analysis is presented, with insights drawn from other ontology-based methods regularly used in the analysis of genomic experiments. Finally, suggestions for future work are offered.

More Details

Accommodating complexity and human behaviors in decision analysis

Backus, George A.; Strip, David R.; Siirola, John D.; Bastian, Mark S.; Schoenwald, David A.; Braithwaite, Karl R.

This is the final report for a LDRD effort to address human behavior in decision support systems. One sister LDRD effort reports the extension of this work to include actual human choices and additional simulation analyses. Another provides the background for this effort and the programmatic directions for future work. This specific effort considered the feasibility of five aspects of model development required for analysis viability. To avoid the use of classified information, healthcare decisions and the system embedding them became the illustrative example for assessment.

More Details

Analysis and control of distributed cooperative systems

Feddema, John T.; Schoenwald, David A.; Parker, Eric P.; Wagner, John S.

As part of DARPA Information Processing Technology Office (IPTO) Software for Distributed Robotics (SDR) Program, Sandia National Laboratories has developed analysis and control software for coordinating tens to thousands of autonomous cooperative robotic agents (primarily unmanned ground vehicles) performing military operations such as reconnaissance, surveillance and target acquisition; countermine and explosive ordnance disposal; force protection and physical security; and logistics support. Due to the nature of these applications, the control techniques must be distributed, and they must not rely on high bandwidth communication between agents. At the same time, a single soldier must easily direct these large-scale systems. Finally, the control techniques must be provably convergent so as not to cause undo harm to civilians. In this project, provably convergent, moderate communication bandwidth, distributed control algorithms have been developed that can be regulated by a single soldier. We have simulated in great detail the control of low numbers of vehicles (up to 20) navigating throughout a building, and we have simulated in lesser detail the control of larger numbers of vehicles (up to 1000) trying to locate several targets in a large outdoor facility. Finally, we have experimentally validated the resulting control algorithms on smaller numbers of autonomous vehicles.

More Details

Simulating economic effects of disruptions in the telecommunications infrastructure

Barton, Dianne C.; Barton, Dianne C.; Eidson, Eric D.; Schoenwald, David A.; Cox, Roger G.; Reinert, Rhonda K.

CommAspen is a new agent-based model for simulating the interdependent effects of market decisions and disruptions in the telecommunications infrastructure on other critical infrastructures in the U.S. economy such as banking and finance, and electric power. CommAspen extends and modifies the capabilities of Aspen-EE, an agent-based model previously developed by Sandia National Laboratories to analyze the interdependencies between the electric power system and other critical infrastructures. CommAspen has been tested on a series of scenarios in which the communications network has been disrupted, due to congestion and outages. Analysis of the scenario results indicates that communications networks simulated by the model behave as their counterparts do in the real world. Results also show that the model could be used to analyze the economic impact of communications congestion and outages.

More Details

Final report for the endowment of simulator agents with human-like episodic memory LDRD

Forsythe, James C.; Forsythe, James C.; Speed, Ann S.; Lippitt, Carl E.; Schaller, Mark J.; Xavier, Patrick G.; Thomas, Edward V.; Schoenwald, David A.

This report documents work undertaken to endow the cognitive framework currently under development at Sandia National Laboratories with a human-like memory for specific life episodes. Capabilities have been demonstrated within the context of three separate problem areas. The first year of the project developed a capability whereby simulated robots were able to utilize a record of shared experience to perform surveillance of a building to detect a source of smoke. The second year focused on simulations of social interactions providing a queriable record of interactions such that a time series of events could be constructed and reconstructed. The third year addressed tools to promote desktop productivity, creating a capability to query episodic logs in real time allowing the model of a user to build on itself based on observations of the user's behavior.

More Details

Aspen-EE: An Agent-Based Model of Infrastructure Interdependency

Barton, Dianne C.; Eidson, Eric D.; Schoenwald, David A.; Stamber, Kevin L.; Reinert, Rhonda K.

This report describes the features of Aspen-EE (Electricity Enhancement), a new model for simulating the interdependent effects of market decisions and disruptions in the electric power system on other critical infrastructures in the US economy. Aspen-EE extends and modifies the capabilities of Aspen, an agent-based model previously developed by Sandia National Laboratories. Aspen-EE was tested on a series of scenarios in which the rules governing electric power trades were changed. Analysis of the scenario results indicates that the power generation company agents will adjust the quantity of power bid into each market as a function of the market rules. Results indicate that when two power markets are faced with identical economic circumstances, the traditionally higher-priced market sees its market clearing price decline, while the traditionally lower-priced market sees a relative increase in market clearing price. These results indicate that Aspen-EE is predicting power market trends that are consistent with expected economic behavior.

More Details
8 Results
8 Results

Current Filters

Clear all