Publications

15 Results
Skip to search filters

Quantifying hydraulic and water quality uncertainty to inform sampling of drinking water distribution systems

Journal of Water Resources Planning and Management

Hart, David B.; Rodriguez, J.S.; Burkhardt, Jonathan; Borchers, Brian; Laird, Carl D.; Murray, Regan; Klise, Katherine A.; Haxton, Terranna

Sampling of drinking water distribution systems is performed to ensure good water quality and protect public health. Sampling also satisfies regulatory requirements and is done to respond to customer complaints or emergency situations. Water distribution system modeling techniques can be used to plan and inform sampling strategies. However, a high degree of accuracy and confidence in the hydraulic and water quality models is required to support real-time response. One source of error in these models is related to uncertainty in model input parameters. Effective characterization of these uncertainties and their effect on contaminant transport during a contamination incident is critical for providing confidence estimates in model-based design and evaluation of different sampling strategies. In this paper, the effects of uncertainty in customer demand, isolation valve status, bulk reaction rate coefficient, contaminant injection location, start time, duration, and rate on the size and location of the contaminant plume are quantified for two example water distribution systems. Results show that the most important parameter was the injection location. The size of the plume was also affected by the reaction rate coefficient, injection rate, and injection duration, whereas the exact location of the plume was additionally affected by the isolation valve status. Uncertainty quantification provides a more complete picture of how contaminants move within a water distribution system and more information when using modeling results to select sampling locations.

More Details

Water Network Tool for Resilience (WNTR) User Manual

Klise, Katherine A.; Hart, David B.; Moriarty, Dylan; Bynum, Michael L.; Murray, Regan M.; Burkhardt, Jonathan B.; Haxton, Terra H.

Drinking water systems face multiple challenges, including aging infrastructure, water quality concerns, uncertainty in supply and demand, natural disasters, environmental emergencies, and cyber and terrorist attacks. All of these have the potential to disrupt a large portion of a water system causing damage to infrastructure and outages to customers. Increasing resilience to these types of hazards is essential to improving water security. As one of the United States (US) sixteen critical infrastructure sectors, drinking water is a national priority. The National Infrastructure Advisory Council defined infrastructure resilience as “the ability to reduce the magnitude and/or duration of disruptive events. The effectiveness of a resilient infrastructure or enterprise depends upon its ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially disruptive event”. Being able to predict how drinking water systems will perform during disruptive incidents and understanding how to best absorb, recover from, and more successfully adapt to such incidents can help enhance resilience.

More Details

Water Security Toolkit User Manual Version 1.2

Klise, Katherine A.; Siirola, John D.; Hart, David B.; Hart, William E.; Phillips, Cynthia A.; Haxton, Terranna H.; Murray, Regan M.; Janke, Robert J.; Taxon, Thomas T.; Laird, Carl L.; Seth, Arpan S.; Hackebeil, Gabriel H.; McGee, Shawn M.; Mann, Angelica M.

The Water Security Toolkit (WST) is a suite of open source software tools that can be used by water utilities to create response strategies to reduce the impact of contamination in a water distribution network . WST includes hydraulic and water quality modeling software , optimizati on methodologies , and visualization tools to identify: (1) sensor locations to detect contamination, (2) locations in the network in which the contamination was introduced, (3) hydrants to remove contaminated water from the distribution system, (4) locations in the network to inject decontamination agents to inactivate, remove, or destroy contaminants, (5) locations in the network to take grab sample s to help identify the source of contamination and (6) valves to close in order to isolate contaminate d areas of the network. This user manual describes the different components of WST , along w ith examples and case studies. License Notice The Water Security Toolkit (WST) v.1.2 Copyright c 2012 Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive license for use of this work by or on behalf of the U.S. government. This software is distributed under the Revised BSD License (see below). In addition, WST leverages a variety of third-party software packages, which have separate licensing policies: Acro Revised BSD License argparse Python Software Foundation License Boost Boost Software License Coopr Revised BSD License Coverage BSD License Distribute Python Software Foundation License / Zope Public License EPANET Public Domain EPANET-ERD Revised BSD License EPANET-MSX GNU Lesser General Public License (LGPL) v.3 gcovr Revised BSD License GRASP AT&T Commercial License for noncommercial use; includes randomsample and sideconstraints executable files LZMA SDK Public Domain nose GNU Lesser General Public License (LGPL) v.2.1 ordereddict MIT License pip MIT License PLY BSD License PyEPANET Revised BSD License Pyro MIT License PyUtilib Revised BSD License PyYAML MIT License runpy2 Python Software Foundation License setuptools Python Software Foundation License / Zope Public License six MIT License TinyXML zlib License unittest2 BSD License Utilib Revised BSD License virtualenv MIT License Vol Common Public License vpykit Revised BSD License Additionally, some precompiled WST binary distributions might bundle other third-party executables files: Coliny Revised BSD License (part of Acro project) Dakota GNU Lesser General Public License (LGPL) v.2.1 PICO Revised BSD License (part of Acro project) i Revised BSD License Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Sandia National Laboratories nor Sandia Corporation nor the names of its con- tributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM- PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD- ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ii Acknowledgements This work was supported by the U.S. Environmental Protection Agency through its Office of Research and Development (Interagency Agreement # DW8992192801). The material in this document has been subject to technical and policy review by the U.S. EPA, and approved for publication. The views expressed by individual authors, however, are their own, and do not necessarily reflect those of the U.S. Environmental Protection Agency. Mention of trade names, products, or services does not convey official U.S. EPA approval, endorsement, or recommendation. The Water Security Toolkit is an extension of the Threat Ensemble Vulnerability Assessment-Sensor Place- ment Optimization Tool (TEVA-SPOT), which was also developed with funding from the U.S. Environ- mental Protection Agency through its Office of Research and Development (Interagency Agreement # DW8992192801). The authors acknowledge the following individuals for their contributions to the devel- opment of TEVA-SPOT: Jonathan Berry (Sandia National Laboratories), Erik Boman (Sandia National Laboratories), Lee Ann Riesen (Sandia National Laboratories), James Uber (University of Cincinnati), and Jean-Paul Watson (Sandia National Laboratories). iii Acronyms ATUS American Time-Use Survey BLAS Basic linear algebra sub-routines CFU Colony-forming unit CVAR Conditional value at risk CWS Contamination warning system EA Evolutionary algorithm EDS Event detection system EPA U.S. Environmental Protection Agency EC Extent of Contamination ERD EPANET results database file GLPK GNU Linear Programming Kit GRASP Greedy randomized adaptive sampling process HEX Hexadecimal HTML HyperText markup language INP EPANET input file LP Linear program MC Mass consumed MILP Mixed integer linear program MIP Mixed integer program MSX Multi-species extension for EPANET NFD Number of failed detections NS Number of sensors NZD Non-zero demand PD Population dosed PE Population exposed PK Population killed TAI Threat assessment input file TCE Tailed-conditioned expectation TD Time to detection TEC Timed extent of contamination TEVA Threat ensemble vulnerability assessment TSB Tryptic soy broth TSG Threat scenario generation file TSI Threat simulation input file VAR Value at risk VC Volume consumed WST Water Security Toolkit YML YAML configuration file format for WST iv Symbols Notation Definition Example { , } set brackets { 1,2,3 } means a set containing the values 1,2, and 3. [?] is an element of s [?] S means that s is an element of the set S . [?] for all s = 1 [?] s [?] S means that the statement s = 1 is true for all s in set S . P summation P n i =1 s i means s 1 + s 2 + * * * + s n . \ set minus S \ T means the set that contains all those elements of S that are not in set T . %7C given %7C is used to define conditional probability. P ( s %7C t ) means the prob- ability of s occurring given that t occurs. %7C ... %7C cardinality Cardinality of a set is the number of elements of the set. If set S = { 2,4,6 } , then %7C S %7C = 3. v

More Details

Sensor placement for municipal water networks

Phillips, Cynthia A.; Boman, Erik G.; Carr, Robert D.; Hart, William E.; Berry, Jonathan W.; Watson, Jean-Paul W.; Hart, David B.; Mckenna, Sean A.; Riesen, Lee A.

We consider the problem of placing a limited number of sensors in a municipal water distribution network to minimize the impact over a given suite of contamination incidents. In its simplest form, the sensor placement problem is a p-median problem that has structure extremely amenable to exact and heuristic solution methods. We describe the solution of real-world instances using integer programming or local search or a Lagrangian method. The Lagrangian method is necessary for solution of large problems on small PCs. We summarize a number of other heuristic methods for effectively addressing issues such as sensor failures, tuning sensors based on local water quality variability, and problem size/approximation quality tradeoffs. These algorithms are incorporated into the TEVA-SPOT toolkit, a software suite that the US Environmental Protection Agency has used and is using to design contamination warning systems for US municipal water systems.

More Details

Integrating event detection system operation characteristics into sensor placement optimization

Hart, David B.; Hart, William E.; Mckenna, Sean A.; Phillips, Cynthia A.

We consider the problem of placing sensors in a municipal water network when we can choose both the location of sensors and the sensitivity and specificity of the contamination warning system. Sensor stations in a municipal water distribution network continuously send sensor output information to a centralized computing facility, and event detection systems at the control center determine when to signal an anomaly worthy of response. Although most sensor placement research has assumed perfect anomaly detection, signal analysis software has parameters that control the tradeoff between false alarms and false negatives. We describe a nonlinear sensor placement formulation, which we heuristically optimize with a linear approximation that can be solved as a mixed-integer linear program. We report the results of initial experiments on a real network and discuss tradeoffs between early detection of contamination incidents, and control of false alarms.

More Details
15 Results
15 Results

Current Filters

Clear all