Publications

2 Results
Skip to search filters

A revolution in micropower : the catalytic nanodiode

Creighton, J.R.; Baucom, Kevin C.; Coltrin, Michael E.; Figiel, J.J.; Cross, Karen C.; Koleske, Daniel K.; Pawlowski, Roger P.; Heller, Edwin J.; Bogart, Katherine B.; Coker, Eric N.

Our ability to field useful, nano-enabled microsystems that capitalize on recent advances in sensor technology is severely limited by the energy density of available power sources. The catalytic nanodiode (reported by Somorjai's group at Berkeley in 2005) was potentially an alternative revolutionary source of micropower. Their first reports claimed that a sizable fraction of the chemical energy may be harvested via hot electrons (a 'chemicurrent') that are created by the catalytic chemical reaction. We fabricated and tested Pt/GaN nanodiodes, which eventually produced currents up to several microamps. Our best reaction yields (electrons/CO{sub 2}) were on the order of 10{sup -3}; well below the 75% values first reported by Somorjai (we note they have also been unable to reproduce their early results). Over the course of this Project we have determined that the whole concept of 'chemicurrent', in fact, may be an illusion. Our results conclusively demonstrate that the current measured from our nanodiodes is derived from a thermoelectric voltage; we have found no credible evidence for true chemicurrent. Unfortunately this means that the catalytic nanodiode has no future as a micropower source.

More Details

Final report on grand challenge LDRD project : a revolution in lighting : building the science and technology base for ultra-efficient solid-state lighting

Simmons, J.A.; Fischer, Arthur J.; Crawford, Mary H.; Abrams, B.L.; Biefeld, Robert M.; Koleske, Daniel K.; Allerman, A.A.; Figiel, J.J.; Creighton, J.R.; Coltrin, Michael E.; Tsao, Jeffrey Y.; Mitchell, Christine C.; Kerley, Thomas M.; Wang, George T.; Bogart, Katherine B.; Seager, Carleton H.; Campbell, Jonathan C.; Follstaedt, D.M.; Norman, Adam K.; Kurtz, S.R.; Wright, Alan F.; Myers, S.M.; Missert, Nancy A.; Copeland, Robert G.; Provencio, P.N.; Wilcoxon, Jess P.; Hadley, G.R.; Wendt, J.R.; Kaplar, Robert K.; Shul, Randy J.; Rohwer, Lauren E.; Tallant, David T.; Simpson, Regina L.; Moffat, Harry K.; Salinger, Andrew G.; Pawlowski, Roger P.; Emerson, John A.; Thoma, Steven T.; Cole, Phillip J.; Boyack, Kevin W.; Garcia, Marie L.; Allen, Mark S.; Burdick, Brent B.; Rahal, Nabeel R.; Monson, Mary A.; Chow, Weng W.; Waldrip, Karen E.

This SAND report is the final report on Sandia's Grand Challenge LDRD Project 27328, 'A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-state Lighting.' This project, which for brevity we refer to as the SSL GCLDRD, is considered one of Sandia's most successful GCLDRDs. As a result, this report reviews not only technical highlights, but also the genesis of the idea for Solid-state Lighting (SSL), the initiation of the SSL GCLDRD, and the goals, scope, success metrics, and evolution of the SSL GCLDRD over the course of its life. One way in which the SSL GCLDRD was different from other GCLDRDs was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and other Department of Energy (DOE) national laboratories - to support a national initiative in SSL R&D. Sandia was a major player in publicizing the tremendous energy savings potential of SSL, and in helping to develop, unify and support community consensus for such an initiative. Hence, our activities in this area, discussed in Chapter 6, were substantial: white papers; SSL technology workshops and roadmaps; support for the Optoelectronics Industry Development Association (OIDA), DOE and Senator Bingaman's office; extensive public relations and media activities; and a worldwide SSL community website. Many science and technology advances and breakthroughs were also enabled under this GCLDRD, resulting in: 55 publications; 124 presentations; 10 book chapters and reports; 5 U.S. patent applications including 1 already issued; and 14 patent disclosures not yet applied for. Twenty-six invited talks were given, at prestigious venues such as the American Physical Society Meeting, the Materials Research Society Meeting, the AVS International Symposium, and the Electrochemical Society Meeting. This report contains a summary of these science and technology advances and breakthroughs, with Chapters 1-5 devoted to the five technical task areas: 1 Fundamental Materials Physics; 2 111-Nitride Growth Chemistry and Substrate Physics; 3 111-Nitride MOCVD Reactor Design and In-Situ Monitoring; 4 Advanced Light-Emitting Devices; and 5 Phosphors and Encapsulants. Chapter 7 (Appendix A) contains a listing of publications, presentations, and patents. Finally, the SSL GCLDRD resulted in numerous actual and pending follow-on programs for Sandia, including multiple grants from DOE and the Defense Advanced Research Projects Agency (DARPA), and Cooperative Research and Development Agreements (CRADAs) with SSL companies. Many of these follow-on programs arose out of contacts developed through our External Advisory Committee (EAC). In h s and other ways, the EAC played a very important role. Chapter 8 (Appendix B) contains the full (unedited) text of the EAC reviews that were held periodically during the course of the project.

More Details
2 Results
2 Results

Current Filters

Clear all