Publications

Results 1–25 of 47
Skip to search filters

Extreme Scale Infrasound Inversion and Prediction for Weather Characterization and Acute Event Detection

van Bloemen Waanders, Bart G.; Ober, Curtis C.

Accurate and timely weather predictions are critical to many aspects of society with a profound impact on our economy, general well-being, and national security. In particular, our ability to forecast severe weather systems is necessary to avoid injuries and fatalities, but also important to minimize infrastructure damage and maximize mitigation strategies. The weather community has developed a range of sophisticated numerical models that are executed at various spatial and temporal scales in an attempt to issue global, regional, and local forecasts in pseudo real time. The accuracy however depends on the time period of the forecast, the nonlinearities of the dynamics, and the target spatial resolution. Significant uncertainties plague these predictions including errors in initial conditions, material properties, data, and model approximations. To address these shortcomings, a continuous data collection occurs at an effort level that is even larger than the modeling process. It has been demonstrated that the accuracy of the predictions depends on the quality of the data and is independent to a certain extent on the sophistication of the numerical models. Data assimilation has become one of the more critical steps in the overall weather prediction business and consequently substantial improvements in the quality of the data would have transformational benefits. This paper describes the use of infrasound inversion technology, enabled through exascale computing, that could potentially achieve orders of magnitude improvement in data quality and therefore transform weather predictions with significant impact on many aspects of our society.

More Details

ASC ATDM Level 2 Milestone #6358: Assess Status of Next Generation Components and Physics Models in EMPIRE

Bettencourt, Matthew T.; Kramer, Richard M.; Cartwright, Keith C.; Phillips, Edward G.; Ober, Curtis C.; Pawlowski, Roger P.; Swan, Matthew S.; Kalashnikova, Irina; Phipps, Eric T.; Conde, Sidafa C.; Cyr, Eric C.; Ulmer, Craig D.; Kordenbrock, Todd H.; Levy, Scott L.; Templet, Gary J.; Hu, Jonathan J.; Lin, Paul L.; Glusa, Christian A.; Siefert, Christopher S.; Glass, Micheal W.

This report documents the outcome from the ASC ATDM Level 2 Milestone 6358: Assess Status of Next Generation Components and Physics Models in EMPIRE. This Milestone is an assessment of the EMPIRE (ElectroMagnetic Plasma In Realistic Environments) application and three software components. The assessment focuses on the electromagnetic and electrostatic particle-in-cell solu- tions for EMPIRE and its associated solver, time integration, and checkpoint-restart components. This information provides a clear understanding of the current status of the EMPIRE application and will help to guide future work in FY19 in order to ready the application for the ASC ATDM L 1 Milestone in FY20. It is clear from this assessment that performance of the linear solver will have to be a focus in FY19.

More Details

Rythmos: Solution and Analysis Package for Differential-Algebraic and Ordinary-Differential Equations

Ober, Curtis C.; Bartlett, Roscoe B.; Coffey, Todd S.; Pawlowski, Roger P.

Time integration is a central component for most transient simulations. It coordinates many of the major parts of a simulation together, e.g., a residual calculation with a transient solver, solution with the output, various operator-split physics, and forward and adjoint solutions for inversion. Even though there is this variety in these transient simulations, there is still a common set of algorithms and proce- dures to progress transient solutions for ordinary-differential equations (ODEs) and differential-alegbraic equations (DAEs). Rythmos is a collection of these algorithms that can be used for the solution of transient simulations. It provides common time-integration methods, such as Backward and Forward Euler, Explicit and Im- plicit Runge-Kutta, and Backward-Difference Formulas. It can also provide sensitivities, and adjoint components for transient simulations. Rythmos is a package within Trilinos, and requires some other packages (e.g., Teuchos and Thrya) to provide basic time-integration capabilities. It also can be cou- pled with several other Trilinos packages to provide additional capabilities (e.g., AztecOO and Belos for linear solutions, and NOX for non-linear solutions). The documentation is broken down into three parts: Theory Manual, User's Manual, and Developer's Guide. The Theory Manual contains the basic theory of the time integrators, the nomenclature and mathematical structure utilized within Rythmos, and verification results demonstrating that the designed order of accuracy is achieved. The User's Manual provides information on how to use the Rythmos, description of input parameters through Teuchos Parameter Lists, and description of convergence test examples. The Developer's Guide is a high-level discussion of the design and structure of Rythmos to provide information to developers for the continued development of capabilities. Details of individual components can be found in the Doxygen webpages. Notice: This document is a collection of notes gathered over many years, however its development has been dormant for the past several years due to the lack of funding. Pre-release copies of this document have circulated to internal Sandia developers, who have found it useful in their application development. Also external Sandia developers have made inquiries for additional Rythmos documentation. To make this documentation publicly available, we are releasing this documentation in an " as-is " condition. We apologize for its incomplete state and obvious lack of readability, however we hope that the information contained in this document will still be helpful to users in their application development.

More Details

Visco-TTI-elastic FWI using discontinuous galerkin

SEG Technical Program Expanded Abstracts

Ober, Curtis C.; Smith, Thomas M.; Overfelt, James R.; Collis, Samuel S.; von Winckel, Gregory J.; van Bloemen Waanders, Bart G.; Downey, Nathan J.; Mitchell, Scott A.; Bond, Stephen D.; Aldridge, David F.; Krebs, Jerome R.

The need to better represent the material properties within the earth's interior has driven the development of higherfidelity physics, e.g., visco-tilted-transversely-isotropic (visco- TTI) elastic media and material interfaces, such as the ocean bottom and salt boundaries. This is especially true for full waveform inversion (FWI), where one would like to reproduce the real-world effects and invert on unprocessed raw data. Here we present a numerical formulation using a Discontinuous Galerkin (DG) finite-element (FE) method, which incorporates the desired high-fidelity physics and material interfaces. To offset the additional costs of this material representation, we include a variety of techniques (e.g., non-conformal meshing, and local polynomial refinement), which reduce the overall costs with little effect on the solution accuracy.

More Details

Wave speed propagation measurements on highly attenuative heated materials

Physics Procedia

Moore, David G.; Ober, Curtis C.; Rodacy, Philip J.; Nelson, C.L.

Ultrasonic wave propagation decreases as a material is heated. Two factors that can characterize material properties are changes in wave speed and energy loss from interactions within the media. Relatively small variations in velocity and attenuation can detect significant differences in microstructures. This paper discusses an overview of experimental techniques that document the changes within a highly attenuative material as it is either being heated or cooled from 25°C to 90°C. The experimental set-up utilizes ultrasonic probes in a through-transmission configuration. The waveforms are recorded and analyzed during thermal experiments. To complement the ultrasonic data, a Discontinuous-Galerkin Model (DGM) was also created which uses unstructured meshes and documents how waves travel in these anisotropic media. This numerical method solves particle motion travel using partial differential equations and outputs a wave trace per unit time. As a result, both experimental and analytical data are compared and presented.

More Details

Wave speed propagation measurements on highly attenuative heated materials

Physics Procedia

Moore, David G.; Ober, Curtis C.; Rodacy, Philip J.; Nelson, C.L.

Ultrasonic wave propagation decreases as a material is heated. Two factors that can characterize material properties are changes in wave speed and energy loss from interactions within the media. Relatively small variations in velocity and attenuation can detect significant differences in microstructures. This paper discusses an overview of experimental techniques that document the changes within a highly attenuative material as it is either being heated or cooled from 25°C to 90°C. The experimental set-up utilizes ultrasonic probes in a through-transmission configuration. The waveforms are recorded and analyzed during thermal experiments. To complement the ultrasonic data, a Discontinuous-Galerkin Model (DGM) was also created which uses unstructured meshes and documents how waves travel in these anisotropic media. This numerical method solves particle motion travel using partial differential equations and outputs a wave trace per unit time. Both experimental and analytical data are compared and presented.

More Details

ALEGRA Update: Modernization and Resilience Progress

Robinson, Allen C.; Petney, Sharon P.; Drake, Richard R.; Weirs, Vincent G.; Adams, Brian M.; Vigil, Dena V.; Carpenter, John H.; Garasi, Christopher J.; Wong, Michael K.; Robbins, Joshua R.; Siefert, Christopher S.; Strack, Otto E.; Wills, Ann E.; Trucano, Timothy G.; Bochev, Pavel B.; Summers, Randall M.; Stewart, James R.; Ober, Curtis C.; Rider, William J.; Haill, Thomas A.; Lemke, Raymond W.; Cochrane, Kyle C.; Desjarlais, Michael P.; Love, Edward L.; Voth, Thomas E.; Mosso, Stewart J.; Niederhaus, John H.

Abstract not provided.

Results 1–25 of 47
Results 1–25 of 47

Current Filters

Clear all