Publications

3 Results
Skip to search filters

Advanced mobile networking, sensing, and controls

Feddema, John T.; Byrne, Raymond H.; Lewis, Christopher L.; Harrington, John J.; Kilman, Dominique K.; Van Leeuwen, Brian P.; Robinett, R.D.

This report describes an integrated approach for designing communication, sensing, and control systems for mobile distributed systems. Graph theoretic methods are used to analyze the input/output reachability and structural controllability and observability of a decentralized system. Embedded in each network node, this analysis will automatically reconfigure an ad hoc communication network for the sensing and control task at hand. The graph analysis can also be used to create the optimal communication flow control based upon the spatial distribution of the network nodes. Edge coloring algorithms tell us that the minimum number of time slots in a planar network is equal to either the maximum number of adjacent nodes (or degree) of the undirected graph plus some small number. Therefore, the more spread out that the nodes are, the fewer number of time slots are needed for communication, and the smaller the latency between nodes. In a coupled system, this results in a more responsive sensor network and control system. Network protocols are developed to propagate this information, and distributed algorithms are developed to automatically adjust the number of time slots available for communication. These protocols and algorithms must be extremely efficient and only updated as network nodes move. In addition, queuing theory is used to analyze the delay characteristics of Carrier Sense Multiple Access (CSMA) networks. This report documents the analysis, simulation, and implementation of these algorithms performed under this Laboratory Directed Research and Development (LDRD) effort.

More Details

Cooperative sentry vehicles and differential GPS leapfrog

Feddema, John T.; Lewis, Christopher L.; Lafarge, Robert A.

As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories Intelligent Systems and Robotics Center is developing and testing the feasibility of using a cooperative team of robotic sentry vehicles to guard a perimeter, perform a surround task, and travel extended distances. This paper describes the authors most recent activities. In particular, this paper highlights the development of a Differential Global Positioning System (DGPS) leapfrog capability that allows two or more vehicles to alternate sending DGPS corrections. Using this leapfrog technique, this paper shows that a group of autonomous vehicles can travel 22.68 kilometers with a root mean square positioning error of only 5 meters.

More Details

Prospecting for lunar ice using a multi-rover cooperative team

Klarer, Paul R.; Feddema, John T.; Lewis, Christopher L.

A multi-rover cooperative team or swarm developed by Sandia National Laboratories is described, including various control methodologies that have been implemented to date. How the swarm's capabilities could be applied to a lunar ice prospecting mission is briefly explored. Some of the specific major engineering issues that must be addressed to successfully implement the swarm approach to a lunar surface mission are outlined, and potential solutions are proposed.

More Details
3 Results
3 Results

Current Filters

Clear all