Publications

6 Results
Skip to search filters

Rim-to-Rim Werables at The Canyon for Health (R2R WATCH): Physiological Cognitive and Biological Markers of Performance Decline in an Extreme Environment

Journal of Human Performance in Extreme Environments

Divis, Kristin; Abbott, Robert G.; Branda, Catherine B.; Avina, Glory E.; Femling, Jon F.; Huerta, Jose G.; Jelinkova, Lucie J.; Jennings, Jeremy K.; Pearce, Emily P.; Ries, Daniel R.; Sanchez, Danielle; Silva, Austin R.

Abstract not provided.

Rim-to-Rim wearables at the canyon for health (R2R WATCH): Experimental design and methodology

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Avina, Glory E.; Abbott, Robert G.; Anderson-Bergman, Clifford I.; Branda, Catherine B.; Divis, Kristin; Newton, Victoria E.; Pearce, Emily; Femling, Jon

The Rim-to-Rim Wearables At The Canyon for Health (R2R WATCH) study examines metrics recordable on commercial off the shelf (COTS) devices that are most relevant and reliable for the earliest possible indication of a health or performance decline. This is accomplished through collaboration between Sandia National Laboratories (SNL) and The University of New Mexico (UNM) where the two organizations team up to collect physiological, cognitive, and biological markers from volunteer hikers who attempt the Rim-to-Rim (R2R) hike at the Grand Canyon. Three forms of data are collected as hikers travel from rim to rim: physiological data through wearable devices, cognitive data through a cognitive task taken every 3 hours, and blood samples obtained before and after completing the hike. Data is collected from both civilian and warfighter hikers. Once the data is obtained, it is analyzed to understand the effectiveness of each COTS device and the validity of the data collected. We also aim to identify which physiological and cognitive phenomena collected by wearable devices are the most relatable to overall health and task performance in extreme environments, and of these ascertain which markers provide the earliest yet reliable indication of health decline. Finally, we analyze the data for significant differences between civilians’ and warfighters’ markers and the relationship to performance. This is a study funded by the Defense Threat Reduction Agency (DTRA, Project CB10359) and the University of New Mexico (The main portion of the R2R WATCH study is funded by DTRA. UNM is currently funding all activities related to bloodwork. DTRA, Project CB10359; SAND2017-1872 C). This paper describes the experimental design and methodology for the first year of the R2R WATCH project.

More Details

Investigation of type-I interferon dysregulation by arenaviruses : a multidisciplinary approach

Branda, Catherine B.; James, Conrad D.; Kozina, Carol L.; Manginell, Ronald P.; Misra, Milind; Moorman, Matthew W.; Negrete, Oscar N.; Ricken, James B.; Wu, Meiye W.

This report provides a detailed overview of the work performed for project number 130781, 'A Systems Biology Approach to Understanding Viral Hemorrhagic Fever Pathogenesis.' We report progress in five key areas: single cell isolation devices and control systems, fluorescent cytokine and transcription factor reporters, on-chip viral infection assays, molecular virology analysis of Arenavirus nucleoprotein structure-function, and development of computational tools to predict virus-host protein interactions. Although a great deal of work remains from that begun here, we have developed several novel single cell analysis tools and knowledge of Arenavirus biology that will facilitate and inform future publications and funding proposals.

More Details

Neural assembly models derived through nano-scale measurements

Fan, Hongyou F.; Forsythe, James C.; Branda, Catherine B.; Warrender, Christina E.; Schiek, Richard S.

This report summarizes accomplishments of a three-year project focused on developing technical capabilities for measuring and modeling neuronal processes at the nanoscale. It was successfully demonstrated that nanoprobes could be engineered that were biocompatible, and could be biofunctionalized, that responded within the range of voltages typically associated with a neuronal action potential. Furthermore, the Xyce parallel circuit simulator was employed and models incorporated for simulating the ion channel and cable properties of neuronal membranes. The ultimate objective of the project had been to employ nanoprobes in vivo, with the nematode C elegans, and derive a simulation based on the resulting data. Techniques were developed allowing the nanoprobes to be injected into the nematode and the neuronal response recorded. To the authors's knowledge, this is the first occasion in which nanoparticles have been successfully employed as probes for recording neuronal response in an in vivo animal experimental protocol.

More Details
6 Results
6 Results

Current Filters

Clear all