Comprehensive Material Characterization and Simultaneous Model Calibration for Improved Computational Simulation Credibility
Computational simulation is increasingly relied upon for high-consequence engineering decisions, and a foundational element to solid mechanics simulations is a credible material model. Our ultimate vision is to interlace material characterization and model calibration in a real-time feedback loop, where the current model calibration results will drive the experiment to load regimes that add the most useful information to reduce parameter uncertainty. The current work investigated one key step to this Interlaced Characterization and Calibration (ICC) paradigm, using a finite load-path tree to incorporate history/path dependency of nonlinear material models into a network of surrogate models that replace computationally-expensive finite-element analyses. Our reference simulation was an elastoplastic material point subject to biaxial deformation with a Hill anisotropic yield criterion. Training data was generated using either a space-filling or adaptive sampling method, and surrogates were built using either Gaussian process or polynomial chaos expansion methods. Surrogate error was evaluated to be on the order of 10⁻5 and 10⁻3 percent for the space-filling and adaptive sampling training data, respectively. Direct Bayesian inference was performed with the surrogate network and with the reference material point simulator, and results agreed to within 3 significant figures for the mean parameter values, with a reduction in computational cost over 5 orders of magnitude. These results bought down risk regarding the surrogate network and facilitated a successful FY22-24 full LDRD proposal to research and develop the complete ICC paradigm.