Publications

8 Results
Skip to search filters

Adapting Secure MultiParty Computation to Support Machine Learning in Radio Frequency Sensor Networks

Berry, Jonathan W.; Ganti, Anand G.; Goss, Kenneth G.; Mayer, Carolyn D.; Onunkwo, Uzoma O.; Phillips, Cynthia A.; Saia, Jared S.; Shead, Timothy M.

In this project we developed and validated algorithms for privacy-preserving linear regression using a new variant of Secure Multiparty Computation (MPC) we call "Hybrid MPC" (hMPC). Our variant is intended to support low-power, unreliable networks of sensors with low-communication, fault-tolerant algorithms. In hMPC we do not share training data, even via secret sharing. Thus, agents are responsible for protecting their own local data. Only the machine learning (ML) model is protected with information-theoretic security guarantees against honest-but-curious agents. There are three primary advantages to this approach: (1) after setup, hMPC supports a communication-efficient matrix multiplication primitive, (2) organizations prevented by policy or technology from sharing any of their data can participate as agents in hMPC, and (3) large numbers of low-power agents can participate in hMPC. We have also created an open-source software library named "Cicada" to support hMPC applications with fault-tolerance. The fault-tolerance is important in our applications because the agents are vulnerable to failure or capture. We have demonstrated this capability at Sandia's Autonomy New Mexico laboratory through a simple machine-learning exercise with Raspberry Pi devices capturing and classifying images while flying on four drones.

More Details

High Fidelity Simulations of Large-scale Wireless Networks (Part II - FY2017)

Onunkwo, Uzoma O.; Ganti, Anand G.; Mitchell, John A.; Scoggin, Michael P.; Schroeppel, Richard C.; Van Leeuwen, Brian P.; Wolf, Michael W.

The ability to simulate wireless networks at large-scale for meaningful amount of time is considerably lacking in today's network simulators. For this reason, many published work in this area often limit their simulation studies to less than a 1,000 nodes and either over-simplify channel characteristics or perform studies over time scales much less than a day. In this report, we show that one can overcome these limitations and study problems of high practical consequence. This work presents two key contributions to high fidelity simulation of large-scale wireless networks: (a) wireless simulations can be sped up by more than 100X in runtime using ideas from spatial indexing algorithms and clipping of negligible signals and (b) clustering and task-oriented programming paradigm can be used to reduce inter- process communication in a parallel discrete event simulation resulting in a better scaling efficiency.

More Details

Scheduling error correction operations for a quantum computer

Phillips, Cynthia A.; Carr, Robert D.; Ganti, Anand G.; Landahl, Andrew J.

In a (future) quantum computer a single logical quantum bit (qubit) will be made of multiple physical qubits. These extra physical qubits implement mandatory extensive error checking. The efficiency of error correction will fundamentally influence the performance of a future quantum computer, both in latency/speed and in error threshold (the worst error tolerated for an individual gate). Executing this quantum error correction requires scheduling the individual operations subject to architectural constraints. Since our last talk on this subject, a team of researchers at Sandia National Labortories has designed a logical qubit architecture that considers all relevant architectural issues including layout, the effects of supporting classical electronics, and the types of gates that the underlying physical qubit implementation supports most naturally. This is a two-dimensional system where 2-qubit operations occur locally, so there is no need to calculate more complex qubit/information transportation. Using integer programming, we found a schedule of qubit operations that obeys the hardware constraints, implements the local-check code in the native gate set, and minimizes qubit idle periods. Even with an optimal schedule, however, parallel Monte Carlo simulation shows that there is no finite error probability for the native gates such that the error-correction system would be benecial. However, by adding dynamic decoupling, a series of timed pulses that can reverse some errors, we found that there may be a threshold. Thus finding optimal schedules for increasingly-refined scheduling problems has proven critical for the overall design of the logical qubit system. We describe the evolving scheduling problems and the ideas behind the integer programming-based solution methods. This talk assumes no prior knowledge of quantum computing.

More Details

Supercomputer and cluster performance modeling and analysis efforts:2004-2006

Ang, James A.; Vaughan, Courtenay T.; Barnette, Daniel W.; Doerfler, Douglas W.; Ganti, Anand G.; Phelps, Sue C.; Rajan, Mahesh R.; Stevenson, Joel O.; Scott, Ryan D.

This report describes efforts by the Performance Modeling and Analysis Team to investigate performance characteristics of Sandia's engineering and scientific applications on the ASC capability and advanced architecture supercomputers, and Sandia's capacity Linux clusters. Efforts to model various aspects of these computers are also discussed. The goals of these efforts are to quantify and compare Sandia's supercomputer and cluster performance characteristics; to reveal strengths and weaknesses in such systems; and to predict performance characteristics of, and provide guidelines for, future acquisitions and follow-on systems. Described herein are the results obtained from running benchmarks and applications to extract performance characteristics and comparisons, as well as modeling efforts, obtained during the time period 2004-2006. The format of the report, with hypertext links to numerous additional documents, purposefully minimizes the document size needed to disseminate the extensive results from our research.

More Details
8 Results
8 Results

Current Filters

Clear all