Publications

10 Results
Skip to search filters

Towards a performance portable compressible CFD code

23rd AIAA Computational Fluid Dynamics Conference, 2017

Howard, Micah A.; Bradley, Andrew M.; Bova, S.W.; Overfelt, James R.; Wagnild, Ross M.; Dinzl, Derek J.; Hoemmen, Mark F.; Klinvex, Alicia M.

High performance computing (HPC) is undergoing a dramatic change in computing architectures. Nextgeneration HPC systems are being based primarily on many-core processing units and general purpose graphics processing units (GPUs). A computing node on a next-generation system can be, and in practice is, heterogeneous in nature, involving multiple memory spaces and multiple execution spaces. This presents a challenge for the development of application codes that wish to compute at the extreme scales afforded by these next-generation HPC technologies and systems - the best parallel programming model for one system is not necessarily the best parallel programming model for another. This inevitably raises the following question: how does an application code achieve high performance on disparate computing architectures without having entirely different, or at least significantly different, code paths, one for each architecture? This question has given rise to the term ‘performance portability’, a notion concerned with porting application code performance from architecture to architecture using a single code base. In this paper, we present the work being done at Sandia National Labs to develop a performance portable compressible CFD code that is targeting the ‘leadership’ class supercomputers the National Nuclear Security Administration (NNSA) is acquiring over the course of the next decade.

More Details

xSDK foundations: Toward an extreme-scale scientific software development kit

Supercomputing Frontiers and Innovations

Bartlett, Roscoe B.; Demeshko, Irina; Gamblin, Todd; Hammond, Glenn E.; Heroux, Michael A.; Johnson, Jeffrey; Klinvex, Alicia M.; Li, Xiaoye; McInnes, Lois C.; Moulton, J.D.; Osei-Kuffuor, Daniel; Sarich, Jason; Smith, Barry; Willenbring, James M.; Yang, Ulrike M.

Extreme-scale computational science increasingly demands multiscale and multiphysics formulations. Combining software developed by independent groups is imperative: no single team has resources for all predictive science and decision support capabilities. Scientific libraries provide high-quality, reusable software components for constructing applications with improved robustness and portability. However, without coordination, many libraries cannot be easily composed. Namespace collisions, inconsistent arguments, lack of third-party software versioning, and additional difficulties make composition costly. The Extreme-scale Scientific Software Development Kit (xSDK) defines community policies to improve code quality and compatibility across independently developed packages (hypre, PETSc, SuperLU, Trilinos, and Alquimia) and provides a foundation for addressing broader issues in software interoperability, performance portability, and sustainability. The xSDK provides turnkey installation of member software and seamless combination of aggregate capabilities, and it marks first steps toward extreme-scale scientific software ecosystems from which future applications can be composed rapidly with assured quality and scalability.

More Details

Advantages to modeling relational data using hypergraphs versus graphs

2016 IEEE High Performance Extreme Computing Conference, HPEC 2016

Wolf, Michael W.; Klinvex, Alicia M.; Dunlavy, Daniel D.

Driven by the importance of relational aspects of data to decision-making, graph algorithms have been developed, based on simplified pairwise relationships, to solve a variety of problems. However, evidence has shown that hypergraphs - generalizations of graphs with (hyper)edges that connect any number of vertices - can better model complex, non-pairwise relationships in data and lead to better informed decisions. In this work, we compare graph and hypergraph models in the context of spectral clustering. For these problems, we demonstrate that hypergraphs are computationally more efficient and can better model complex, non-pairwise relationships for many datasets.

More Details

Ifpack2 User's Guide 1.0

Prokopenko, Andrey V.; Siefert, Christopher S.; Hu, Jonathan J.; Hoemmen, Mark F.; Klinvex, Alicia M.

This is the definitive user manual for the I FPACK 2 package in the Trilinos project. I FPACK 2 pro- vides implementations of iterative algorithms (e.g., Jacobi, SOR, additive Schwarz) and processor- based incomplete factorizations. I FPACK 2 is part of the Trilinos T PETRA solver stack, is templated on index, scalar, and node types, and leverages node-level parallelism indirectly through its use of T PETRA kernels. I FPACK 2 can be used to solve to matrix systems with greater than 2 billion rows (using 64-bit indices). Any options not documented in this manual should be considered strictly experimental .

More Details
10 Results
10 Results

Current Filters

Clear all