Publications

Publications / Other Report

Zero-Truncated Poisson Tensor Decomposition for Sparse Count Data

Lopez, Oscar L.; Lehoucq, Richard B.; Dunlavy, Daniel D.

We propose a novel statistical inference paradigm for zero-inflated multiway count data that dispenses with the need to distinguish between true and false zero counts. Our approach ignores all zero entries and applies zero-truncated Poisson regression on the positive counts. Inference is accomplished via tensor completion that imposes low-rank structure on the Poisson parameter space. Our main result shows that an N-way rank-R parametric tensor 𝓜 ϵ (0, ∞)IΧ∙∙∙ΧI generating Poisson observations can be accurately estimated from approximately IR2log22(I) non-zero counts for a nonnegative canonical polyadic decomposition. Several numerical experiments are presented demonstrating that our zero-truncated paradigm is comparable to the ideal scenario where the locations of false zero counts are known a priori.