Publications
Task mapping stencil computations for non-contiguous allocations
Leung, Vitus J.; Bunde, David P.; Ebbers, Johnathan; Feer, Stefan P.; Price, Nickolas W.; Rhodes, Zachary D.; Swank, Matthew
We examine task mapping algorithms for systems that allocate jobs non-contiguously. Several studies have shown that task placement affects job running time. We focus on jobs with a stencil communication pattern and use experiments on a Cray XE to evaluate novel task mapping algorithms as well as some adapted to this setting. This is done with the miniGhost miniApp which mimics the behavior of CTH, a shock physics application. Our strategies improve average and single-run times by as much as 28% and 36% over a baseline strategy, respectively.