Publications
Spectral risk measures: the risk quadrangle and optimal approximation
We develop a general risk quadrangle that gives rise to a large class of spectral risk measures. The statistic of this new risk quadrangle is the average value-at-risk at a specific confidence level. As such, this risk quadrangle generates a continuum of error measures that can be used for superquantile regression. For risk-averse optimization, we introduce an optimal approximation of spectral risk measures using quadrature. We prove the consistency of this approximation and demonstrate our results through numerical examples.