Publications

Publications / Conference Paper

RVMA: Remote virtual memory access

Grant, Ryan E.; Levenhagen, Michael J.; Dosanjh, Matthew D.; Widener, Patrick W.

Remote Direct Memory Access (RDMA) capabilities have been provided by high-end networks for many years, but the network environments surrounding RDMA are evolving. RDMA performance has historically relied on using strict ordering guarantees to determine when data transfers complete, but modern adaptively-routed networks no longer provide those guarantees. RDMA also exposes low-level details about memory buffers: either all clients are required to coordinate access using a single shared buffer, or exclusive resources must be allocatable per-client for an unbounded amount of time. This makes RDMA unattractive for use in many-to-one communication models such as those found in public internet client-server situations.Remote Virtual Memory Access (RVMA) is a novel approach to data transfer which adapts and builds upon RDMA to provide better usability, resource management, and fault tolerance. RVMA provides a lightweight completion notification mechanism which addresses RDMA performance penalties imposed by adaptively-routed networks, enabling high-performance data transfer regardless of message ordering. RVMA also provides receiver-side resource management, abstracting away previously-exposed details from the sender-side and removing the RDMA requirement for exclusive/coordinated resources. RVMA requires only small hardware modifications from current designs, provides performance comparable or superior to traditional RDMA networks, and offers many new features.In this paper, we describe RVMA's receiver-managed resource approach and how it enables a variety of new data-transfer approaches on high-end networks. In particular, we demonstrate how an RVMA NIC could implement the first hardware-based fault tolerant RDMA-like solution. We present the design and validation of an RVMA simulation model in a popular simulation suite and use it to evaluate the advantages of RVMA at large scale. In addition to support for adaptive routing and easy programmability, RVMA can outperform RDMA on a 3D sweep application by 4.4X.